CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

Teaching logic programming: a review

Serhiy O. Semerikov!?34% [ryna S. Mintii%314785 and
Natalia V. Moiseienko!

!Kryvyi Rih State Pedagogical University, 54 Universytetskyi Ave., Kryvyi Rih, 50086, Ukraine

2Kryvyi Rih National University, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine

3Institute for Digitalisation of Education of the NAES of Ukraine, 9 M. Berlynskoho Str., Kyiv, 04060,
Ukraine

4Zhytomyr Polytechnic State University, 103 Chudnivsyka Str., Zhytomyr, 10005, Ukraine

°Academy of Cognitive and Natural Sciences, 54 Universytetskyi Ave., Kryvyi Rih, 50086, Ukraine
SUniversity of Eédz, 68 Gabriela Narutowicza Str., 90-136 Eédz, Poland

”Lviv Polytechnic National University, 12 Stepana Bandery Str., Lviv, 79000, Ukraine

8Kremenchuk Mykhailo Ostrohradskyi National University, 20 University Str., Kremenchuk, 39600, Ukraine

Abstract. Logic programming constitutes a significant paradigm within computer
science, offering a unique approach to programming based on formal logic rather
than conventional imperative instructions. This review examines contemporary
methodologies for teaching logic programming, spanning various paradigms in-
cluding Prolog, Answer Set Programming (ASP), Datalog, and Constraint Logic
Programming (CLP). Through a comprehensive analysis of literature, we identify
effective pedagogical strategies, common obstacles faced by educators and students,
and emerging trends in instructional techniques. Our findings reveal that visualiza-
tion tools, problem-based learning, integration with other programming paradigms,
and contextual application-based approaches demonstrate the most promise for
enhancing student comprehension and engagement. Additionally, we explore cog-
nitive challenges specific to declarative thinking, educational challenges related
to curriculum integration, and motivational issues that affect student learning
outcomes. This review offers evidence-based recommendations for practitioners and
identifies promising directions for future research in logic programming education.

Keywords: logic programming, computer science education, Prolog, Answer Set
Programming, Datalog, constraint logic programming, declarative programming,
teaching methods

1. Introduction

Logic programming represents a distinct paradigm within the landscape of computer
science education, diverging significantly from the imperative and object-oriented ap-
proaches that dominate mainstream curricula. Founded on principles of mathematical
logic, particularly first-order predicate calculus, logic programming enables problem-
solving through declaration of knowledge rather than specification of control flow. This
fundamental shift in perspective presents unique challenges and opportunities for
both educators and learners.

The distinct nature of logic programming warrants careful consideration of teaching
methodologies. As Hanus [22] notes, the declarative approach requires students
to develop alternative ways of computational thinking — focusing on what needs to

® 0000-0003-0789-0272 (S. O. Semerikov); 0000-0003-3586-4311 (I. S. Mintii); 0000-0002-3559-6081
(N.V. Moiseienko)
&S semerikov@gmail.com (S. O. Semerikov); mintii@iitlt.gov.ua (I. S. Mintii); n.v.moiseenko@gmail.com
(N.V. Moiseienko)
& https://kdpu.edu.ua/semerikov (S. O. Semerikov); https://acnsci.org/mintii/ (I. S. Mintii);
https://kdpu.edu.ua/personal/nvmoiseienko.html (N.V. Moiseienko)
© Copyright for this article by its authors, published by the Academy of Cognitive and Natural Sciences.
@ This is an Open Access article distributed under the terms of the Creative Commons License Attribution
Wol Sh0p 4.0 International (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any

CTE Proceedings medium, provided the original work is properly cited.

399

https://doi.org/10.55056/cte.838
https://orcid.org/0000-0003-0789-0272
https://orcid.org/0000-0003-3586-4311
https://orcid.org/0000-0002-3559-6081
mailto:semerikov@gmail.com
mailto:mintii@iitlt.gov.ua
mailto:n.v.moiseenko@gmail.com
https://kdpu.edu.ua/semerikov
https://acnsci.org/mintii/
https://kdpu.edu.ua/personal/nvmoiseienko.html
https://acnsci.org/cte
https://creativecommons.org/licenses/by/4.0/deed.en
https://acnsci.org

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

be accomplished rather than how to accomplish it. This conceptual reorientation
demands specialized pedagogical strategies.

Despite its theoretical elegance and practical applications in artificial intelligence,
knowledge representation, and constraint solving, logic programming often occupies a
marginal position in computer science curricula. Hynek [25] observes that while logic
programming acquired a firm place within computer science programs decades ago,
the rapid development of new programming languages has pushed it away from the
forefront of widely utilized programming paradigms. Consequently, questions arise
regarding effective approaches to teaching logic programming and its place within
modern computing education.

This review examines current approaches to teaching logic programming across its
major paradigms: Prolog, Answer Set Programming (ASP), Datalog, and Constraint
Logic Programming (CLP). We analyze pedagogical strategies, technological tools,
curriculum integration approaches, and assessment methods. Additionally, we explore
cognitive, educational, and motivational challenges that impact the effectiveness of
logic programming instruction.

Our analysis is guided by several research questions:

1. What are the predominant approaches to teaching logic programming across
different paradigms?

Which teaching methods demonstrate empirical evidence of effectiveness?
What are the primary obstacles to student comprehension and engagement?
How do teaching approaches differ across educational levels and contexts?
What emerging trends and innovations show promise for improving logic pro-
gramming education?

oLk N

2. Background and context

2.1. Definition and historical context

Logic programming emerged in the 1970s from debates concerning procedural
versus declarative representations of knowledge in artificial intelligence [31]. As
Ligeza [35] explains, the fundamental idea, originally proposed by Robert Kowalski,
consists of applying a subset of First-Order Logic for declarative encoding of knowledge
and employing specific resolution theorem proving strategies for inference. This
combination of declarative specification with automated reasoning created a powerful
programming paradigm.

The development of Prolog (Programming in Logic) by Alain Colmerauer and Philippe
Roussel at the University of Aix-Marseille in the early 1970s marked the first practical
implementation of logic programming principles. Since then, logic programming has
evolved into a diverse family of languages and systems, each emphasizing different
aspects of declarative computation.

2.2. Major logic programming paradigms
Contemporary logic programming encompasses several distinct paradigms, each
with unique characteristics and applications:

1. Prolog and its variants remains the most widely taught and utilized logic program-
ming language. Based on Horn clause logic, it employs a backward-chaining
inference mechanism. According to Gelfond et al. [19], the advent of Prolog
in 1972 started a revolution that “enabled us to think previously impossible
thoughts, and ushered in both logic programming and the declarative program-
ming paradigm”. Modern Prolog systems like SWI-Prolog, SICStus, and Ciao
extend basic logic programming with features such as constraints, modules, and
higher-order programming.

400

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

2. Answer Set Programming (ASP) evolved from research on the semantics of negation
in logic programs. As Schaub and Woltran [52] explains, ASP offers “a high-level
modeling language paired with high-performance solving technology”, making it
particularly suitable for knowledge representation and combinatorial optimization
problems. Unlike Prolog’s backward-chaining approach, ASP employs a more
declarative paradigm where solutions are represented as answer sets, computed
through sophisticated constraint solving techniques.

3. Constraint Logic Programming (CLP) extends logic programming with constraint
solving capabilities. According to Gavanelli and Rossi [17], CLP has been “one of
the most successful branches of Logic Programming”, attracting interest from
both theoreticians and practitioners. By integrating constraints over specific
domains (e.g., real numbers, finite domains), CLP enables efficient solving of
complex problems in scheduling, planning, and optimization.

4. Datalog combines logic programming with database query languages. With its
foundation in deductive databases, Datalog has experienced renewed interest in
applications such as program analysis, information extraction, and knowledge
graphs. Saenz-Pérez [51] describes Datalog as a deductive database system
that supports both Datalog and SQL query languages, enabling educational
exploration of both paradigms within a unified framework.

Prolog Answer Set Programming
Execution: Backward-chaining . : : Execution: Model generation
Hist 1 evolut
Applications: NLP, expert systems Storica) evoton Applications: Planning, KR
Complexity: Medium Complexity: High
Tool availability: High Tool availability: Medium
o H
(7@0 1
%, :
Simplified syntax QS‘(}- 1 Shared techniques
5, :
(S' 1

Datalog Constraint Logic Programming
Execution: Bottom-up Execution: Constraint solving
Applications: Databases, analysis g¢------------- + Applications: Scheduling, pptimization
Complexity: Low-medium Complementary Complexity: High
Tool availability: Medium Tool availability: Medium

Figure 1: Comparison of major logic programming paradigms, illustrating their key charac-
teristics, applications, and relationships. The arrows indicate evolutionary relationships and
conceptual connections between paradigms.

2.3. Current position in computing curricula

Despite its theoretical significance and practical applications, logic programming
occupies an inconsistent position within computing curricula globally. Hynek [25]
raises the question of “whether there are still some good and justified reasons to keep
Logic Programming in the present ICT specialists curricula”, noting that while logic
programming was once prominent in European and Asian universities, it has been
marginalized as newer programming languages gained prominence.

The teaching of logic programming often occurs within specialized courses on
programming languages, artificial intelligence, or formal methods. Villadsen and

401

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

Jacobsen [59] describes two university courses where logic programming is taught:
a bachelor-level course on logical systems and logic programming, and a master’s
course on automated reasoning. This positioning reflects both the specialized nature
of logic programming and its connections to broader areas of computer science.

Recent initiatives have also explored introducing logic programming at earlier ed-
ucational stages. Rodriguez and Cecchi [50] advocates for the early integration of
programming within compulsory education, presenting a methodological proposal
called “Metagame” that facilitates the effective integration of logic programming in
primary education through collaborative and gamifying strategies.

3. Teaching approaches by paradigm

3.1. Prolog-based instruction
3.1.1. Traditional approaches: syntax-first vs. problem-first

Two principal approaches dominate Prolog instruction: syntax-first and problem-
first methodologies. The syntax-first approach begins with language constructs and
gradually introduces problem-solving techniques, while the problem-first approach
starts with engaging challenges and introduces syntax as needed.

Wick and Stevenson [63] observes that “the traditional way to teach Prolog is to
have students start by writing recursive mathematical definitions of the problems
they are trying to solve”. However, this approach may not integrate well with broader
programming language curricula. As an alternative, they propose introducing Prolog
through a demonstration language like Scheme, finding this approach equally effective
for novice learners.

The problem-first approach has gained traction due to evidence suggesting improved
student engagement. Bellstrom and Thorén [6] argues that through visualization, “the
logic component in the learning process can be empowered to facilitate an application
perspective to achieve syntax”. This represents a fundamental shift from traditional
syntax-first methodologies.

Figure 2 illustrates the comparative learning trajectories of these approaches. While
problem-first approaches typically result in faster initial comprehension, both method-
ologies tend to converge as students reach advanced proficiency levels.

3.1.2. Visual learning tools and execution tracers

Visualization plays a crucial role in enhancing students’ understanding of Prolog’s
execution model, particularly the challenging concepts of unification, backtracking,
and resolution. Vosinakis, Anastassakis and Koutsabasis [60] notes that “the limited
availability of visual teaching aids for LP can lead to low motivation for learning”,
highlighting the importance of visual tools in sustaining student engagement.

Several visual learning environments have demonstrated effectiveness. The MeLoISE
platform presented by Vosinakis, Koutsabasis and Anastassakis [61] provides a collab-
orative visual interface to Prolog programming within virtual worlds. Their evaluation
revealed that “students performed very well and were enthusiastic with the new
environment”, suggesting substantial benefits from visual learning approaches.

Similarly, Prolog visualization systems using Logichart diagrams can help students
understand execution flow. As Adachi [1] explains, these tools allow students to “visu-
ally trace Prolog execution (goal calling, success, and failure)” and observe “dynamic
change in a Prolog program by calling extra-logical predicates”.

3.1.3. Problem-based learning methods
Problem-based learning (PBL) has emerged as a particularly effective approach for
teaching Prolog. This methodology situates learning in complex tasks that require

402

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

100 T T
—— Syntax-first
E —— Problem-first
L 80 i
=
o)
‘D
§ 6ol |
<=
()
=
2,
E |]
Q
)
=
[}
T 20| |
=
n
O | | | | |
Initial Basic concepts Intermediate Advanced Expert

Learning phase

Figure 2: Comparative student comprehension levels across learning phases for syntax-first
versus problem-first teaching approaches in Prolog instruction. The problem-first approach
shows stronger initial and early-phase comprehension, while both approaches converge at
advanced levels.

scaffolding to help students engage in sense-making and manage their problem-solving
processes.

Wu and Lo [64] found that incorporating worked examples into problem-based
learning activities significantly enhanced students’ logic problem-solving performance.
Their approach involved “a series of geometric logic problems developed and tested in
a pilot study”, demonstrating how structured PBL can develop logical thinking skills.

The effectiveness of PBL in Prolog instruction is further supported by Souza and
Bittencourt [55], who analyzed the impact of using a problem-based learning approach
on student motivation and engagement in an introductory programming course. They
discovered that “the PBL approach relates to students’ attention and relevance”,
though they caution that “there must be careful problem design and planning in order
to positively relate to student motivation and engagement”.

3.1.4. Integration with AI curriculum

Prolog instruction frequently occurs within broader artificial intelligence curricula,
where its logical foundations serve as a bridge between theoretical Al concepts and
practical implementation.

Zhang et al. [65] demonstrate the integration of logic programming with science
education, developing “two modules: one for chemistry and the other for chemistry
and physics” implemented in an elective course for 8th graders. Their findings indicate
that a “Logic Programming based approach is accessible to the students”, suggesting
potential for broader integration across educational contexts.

At university level, Page [44] argues for computational logic in the undergraduate
curriculum, noting that “logic provides the mathematical basis for hardware design
and software development”. The integration of logic programming within computer
science programs enables students to develop reasoning skills applicable across
various domains.

403

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

3.2. Answer Set Programming pedagogy
3.2.1. Modeling-first approaches

ASP pedagogy frequently employs modeling-first approaches, emphasizing problem
representation over syntactic details. This approach aligns with ASP’s declarative
nature, where problem specification takes precedence over execution mechanisms.

Paramonov et al. [45] introduced Sketched Answer Set Programming (SKASP), a novel
method aimed at facilitating ASP modeling. In this approach, “the user writes partial
ASP programs, in which uncertain parts are left open and marked with question marks”
while providing examples of desired program behavior. The system then synthesizes a
complete ASP program, reducing the complexity of model development for novices.

The effectiveness of modeling-first approaches is reinforced by Schaub and Woltran
[52], who notes that ASP’s “declarative approach allows a user to concentrate on
a problem’s specification rather than the computational means to solve it”. This
makes ASP particularly suitable for teaching key Al techniques through concise and
elaboration-tolerant representations.

3.2.2. Tools for ASP education

Several specialized tools support ASP education. Bertagnon and Gavanelli [7]
presents ASPECT (Answer Set rePresentation as vEctor graphiCs in laTex), a sub-
language of ASP that enables users to “directly define, in an intuitive and declarative
way, a graphical representation of the answer set”. This visualization capability helps
students interpret the often complex and verbose output of ASP solvers.

Another notable educational tool is onlineSPARC, described by Marcopoulos and
Zhang [39] as “an online ASP environment with a self-contained file system and a
simple interface”. This platform allows students to edit logic programs and perform
various tasks, including querying programs and producing visualizations based on
answer sets. By eliminating the complexity of downloading and installing specialized
software, onlineSPARC reduces barriers to ASP adoption in educational settings.

Experimental environments like asprilo, presented by Gebser et al. [18], provide
domain-specific frameworks for teaching ASP concepts. This system supports “experi-
mental studies of approaches addressing complex dynamic applications”, with a focus
on robotic intra-logistics, combining multi-agent planning, reasoning about action,
and resource management within a unified framework.

3.2.3. Integration with knowledge representation courses

ASP is frequently taught within the context of knowledge representation courses,
where its formal semantics and expressive power make it particularly suitable for
modeling complex domains.

Genesereth [20] identifies General Game Playing (GGP) as a “killer app for Logic
Programming”, finding it “especially well-suited to LP” for educational purposes. By
analyzing the components of GGP — game description, game playing, and metagaming —
educators can illustrate how logic programming techniques apply to engaging real-
world problems.

The integration of ASP with other reasoning paradigms is exemplified by El-Khatib,
Pontelli and Son [14], who presents ASP-PROLOG, “a system which provides a tight
and well-defined integration of a multi-paradigm logic programming system (CIAO
Prolog) and Answer Set Programming”. This combined approach enables students to
explore different reasoning mechanisms within a unified framework, enhancing their
understanding of knowledge representation techniques.

404

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

3.3. Constraint Logic Programming
3.3.1. Teaching approaches

Constraint Logic Programming (CLP) combines logic programming with constraint
solving, requiring specialized pedagogical approaches that address both paradigms.

Szeredi [56] describes experiences of teaching constraints through logic puzzles at
the Budapest University of Technology and Economics. This approach uses puzzles
to illustrate constraint programming techniques, making abstract concepts concrete
through engaging, game-like problems.

A comprehensive approach to teaching CLP is presented by Apt and Wallace [3] in
their work on constraint logic programming using Eclipse. They propose a systematic
introduction through carefully-chosen examples that guide students through the
language and demonstrate its expressive power, versatility, and utility.

Fages [16] advocates using Prolog with its constraint-solving libraries as “a unique
language to teach all aspects of constraint programming”. By adding higher-level math-
ematical modeling language constructs to Prolog libraries, educators can create an
integrated environment for teaching constraint-based modeling, search programming,
and constraint solving.

3.3.2. Application-based learning

Application-based learning approaches in CLP emphasize practical problem-solving
in domains such as scheduling, planning, and optimization.

Kerdprasop and Kerdprasop [28] demonstrates the use of constraint logic program-
ming for frequent pattern discovery in knowledge discovery tasks. Their implementa-
tion on the ECLiPSe constraint system provides students with hands-on experience
applying CLP techniques to data mining problems.

Another practical application is presented by Badica, Badica and Ivanovic [5], who
uses Constraint Logic Programming to model block-structured scheduling processes.
This approach allows students to explore the relationship between business process
modeling and project scheduling using CLP as an integrative framework.

Dal Palu et al. [11] describes using CLP for exploring protein fragment assem-
bly, illustrating how constraint programming can address complex bioinformatics
challenges. This type of domain-specific application helps students understand the
practical utility of CLP in scientific research.

3.4. Datalog and deductive databases
3.4.1. Current teaching practices

Datalog, with its foundations in deductive databases, occupies a unique position
between logic programming and database management systems.

Saenz-Pérez [51] presents the Datalog Educational System (DES), “a deductive
database which supports both Datalog and SQL as query languages”. This dual-
language approach enables students to explore the relationship between logic pro-
gramming and relational database concepts within a unified framework.

Teaching Datalog often involves compiler-based approaches. Cuteri and Ricca [10]
describes a compiler for stratified Datalog programs that transforms a given program
into a problem-specific executable implementation. This technique helps students
understand the relationship between declarative specifications and efficient execution
mechanisms.

3.4.2. Tools and platforms

Several specialized tools support Datalog education. Tran, Kato and Hu [58] presents
a counterexample-guided debugger for non-recursive Datalog, which helps students
understand the behavior of their programs through concrete counterexamples when
expectations are not met.

405

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

Another educational approach involves constraining Datalog programs. Skvortsov
et al. [54] presents Logica, “an open-source logic programming language” that extends
Datalog with support for numerical computations and integrates with data science
toolchains. This modern implementation connects traditional Datalog concepts with
contemporary data science practices, enhancing relevance for students.

The timeline in figure 3 illustrates the shift from syntax-focused methods to inter-
active, visualization-based, and integrated approaches, alongside the development of
increasingly sophisticated educational tools.

Intelligent

Virtual worlds &

tutoring interactive
systems visualization
Syntax-first Microworld Problem-based Integrated online
approaches explorations learning environments
> Time
1970s 1980s 1990s 2000s 2010s 2020s
Original Prolog || Logic-based || Advanced Prolog | ASP solvers MeLoISE, onlineSPARC,
implementations || educational || environments | & debugging Logichart, Logica,
languages (SWI, SICStus) tools ASPECT cloud platforms

Figure 3: Evolution of pedagogical approaches and tools for teaching logic programming from
the 1970s to the present day.

4. Cross-cutting pedagogical themes

4.1. Visualization approaches

Visualization plays a critical role in teaching abstract concepts across all logic
programming paradigms. Effective visualization techniques help students understand
execution models, develop intuition for declarative thinking, and interpret program
results.

4.1.1. Types of visualizations

Logic programming visualizations span a spectrum from execution tracers to con-
ceptual representations. Malandrino et al. [38] presents a diagrammatic language for
visualizing logic based on spatial, graphical, and symbolic notations. Their V-Logic
approach supports “different visual representation schemes” to provide “greater insight
than any alone”.

Eppler [15] compares various visualization formats — concept maps, mind maps,
conceptual diagrams, and visual metaphors - finding that their combination “can
play to the strength of each one”. When applied to logic programming concepts,
these complementary visualization techniques can enhance motivation, attention,
understanding, and recall.

Program execution visualization is particularly important in logic programming
education. Loboda and Brusilovsky [36] evaluates user-adaptive explanatory program
visualization, finding that “explanatory visualization allows students to substantially
increase the understanding of a new programming topic”. Their eye-tracking studies re-
vealed that “adaptive visualization captivates attention more than its non-personalized
counterpart and is more interesting to students”.

4.1.2. Evidence of effectiveness

Research consistently demonstrates the effectiveness of visualization in logic pro-
gramming education. Awasekar [4] conducted an experimental study comparing
program visualization with traditional teaching approaches, finding “a statistically
significant higher performance on a post-test for the program visualization group

406

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

compared to the traditional group”. Notably, this effect was observed “regardless of
students’ visual/verbal learning style”, suggesting broad applicability.

The impact of visualization tools extends beyond test performance to motivation and
engagement. Vosinakis, Anastassakis and Koutsabasis [60] found that platforms for
teaching logic programming in virtual worlds yielded “encouraging results regarding
group learning performance and user experience”. By enabling visual interpretation
and verification of program results, these environments make abstract concepts
concrete and accessible.

Visualization effectiveness depends on thoughtful design. Jones et al. [27] demon-
strates that applying established visualization principles to models can increase
accuracy, perceived message credibility, and aesthetic appeal while decreasing mental
effort and review time. These findings suggest that carefully designed visualizations
can significantly enhance the learning experience for logic programming students.

Table 1 summarizes key visualization approaches used in logic programming educa-
tion, highlighting their benefits and limitations. This diversity of approaches allows
educators to select visualization techniques appropriate to specific learning objectives
and student needs.

Table 1
Comparison of visualization approaches in logic programming education.

Approach Description Benefits Limitations
Execution Visualize program execu- Enhances understanding of Technical complex-
tracers tion, including unifica- execution model; makes ab- ity; may overwhelm

tion steps, variable bind- stract processes concrete beginners
ings, and backtracking
Virtual 3D environments where Engaging; promotes collabo- Resource-intensive;
worlds program execution is rep- rative learning; provides in- may distract from
resented through object tuitive metaphors core concepts
interactions
Conceptual Visual representations of Promotes abstract thinking; Less effective for
diagrams logical relationships and aids in problem formulation understanding dy-
structures namic execution
Answer set Graphical representation Simplifies interpretation of Language-specific;
visualization of answer sets for ASP complex results; facilitates limited to certain
programs debugging problem types
Constraint Visual representation of Helps understand constraint Requires prior un-
visualizers constraint propagation solving process; illustrates derstanding of con-

and solution spaces

pruning mechanisms

straint concepts

4.2. Problem-based learning

Problem-based learning (PBL) approaches situate logic programming instruction
within engaging, authentic problem contexts. This methodology has proven particu-
larly effective for teaching declarative programming paradigms.

4.2.1. Types of Problems and Domains

Logic programming education employs diverse problem domains, each offering
unique pedagogical advantages. Wu and Lo [64] explores geometric logic problems,
demonstrating how worked examples can enhance students’ problem-solving per-
Their approach combines structured guidance with opportunities for
independent problem-solving.

formance.

407

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

Puzzle-based problems feature prominently in logic programming education. Szeredi
[56] describes using logic puzzles to teach constraint programming, while Perez-Lancho
et al. [47] presents the MAFIA tool, which “helps students to understand the basic
concepts of logic in an interactive way” through engaging case-based scenarios.

Real-world domains provide authentic contexts for learning. Genesereth [20] advo-
cates using General Game Playing as an application area “especially well-suited to LP”,
while Zhang et al. [65] demonstrates integrating logic programming with chemistry
and physics education. These domain-specific applications help students appreciate
the practical utility of logic programming techniques.

4.2.2, Scaffolding approaches

Effective PBL in logic programming requires thoughtful scaffolding to manage
cognitive load and support progressive skill development.

Choo [9] discusses scaffolding in problem-based learning, distinguishing between
“hard scaffolds” (static supports developed based on learner difficulties) and “soft scaf-
folds” (teacher actions responding to specific learner needs). Both types play important
roles in supporting students as they navigate the challenges of logic programming.

Tiantong and Teemuangsai [57] presents four scaffolding modules for collaborative
problem-based learning: metacognitive scaffolding, conceptual scaffolding, strategic
scaffolding, and procedural scaffolding. These complementary approaches address
different aspects of the learning process, from problem comprehension to solution
implementation.

Tiered scaffolding approaches can be particularly effective. Lape [33] describes a
“tiered scaffolding of Problem-Based Learning techniques” ranging from highly guided
to entirely unformed problems. This progressive approach helps students develop
independence while managing cognitive load appropriately.

4.3. Integrated curriculum approaches
Integration of logic programming with broader curriculum elements enhances rele-
vance and promotes transfer of knowledge across domains.

4.3.1. Logic programming in different course contexts

Logic programming appears in diverse curricular contexts, from specialized pro-
gramming courses to broader computer science and STEM education.

Boluk [8] advocates for integrated curriculum design as “an empowering and en-
gaging pedagogical approach” that unites core courses into a coherent whole. This
approach can position logic programming within a broader context of computing skills
and concepts.

At the primary and secondary education levels, Rodriguez and Cecchi [50] presents
Metagame, a methodological proposal for integrating logic programming in primary
education through “collaborative and gamifying strategies”. This early introduction
can develop foundational computational thinking skills that support later learning.

In university settings, Villadsen and Jacobsen [59] describes using the proof assis-
tant Isabelle in two courses on logic and automated reasoning, demonstrating how
logic programming concepts can be integrated with formal methods education.

4.3.2. Cross-paradigm teaching

Teaching logic programming alongside other programming paradigms presents both
challenges and opportunities.

Ragonis and Haberman [48] explores linking different programming paradigms,
noting that “educators recommend that students become acquainted with different
programming paradigms in order to acquire alternative ways of computational think-
ing”. They specifically examine object-oriented programming and logic programming

408

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

in the context of using inheritance for knowledge representation and problem solving.

A more comprehensive approach is presented by Oprea [43], who developed Onto-
DeclarProg, “an educational ontology on declarative programming” that integrates
ontologies on logic programming and functional programming. This framework helps
students understand the relationships between different paradigms within a unified
conceptual structure.

Hanus [23] discusses functional logic programming, presenting how languages
like Curry combine “the most important declarative programming paradigms”. This
multi-paradigm approach provides “a common platform for the research, teaching,
and application of integrated functional logic languages”.

Figure 4 illustrates connections between logic programming and related disciplines,
application domains, core curriculum elements, and integrated teaching approaches.

Educational Multi-
ontologies paradigm
Onto- languages

DeclarProg Curry

Expert systems

Planning 2o, Optimization

STEM General
integration game playing
Science GGP frame-

+ Logic work

Figure 4: Conceptual framework for integrating logic programming within the broader com-
puter science curriculum.

4.4. Online and self-directed learning
The growth of online education has created new opportunities and challenges for
logic programming instruction.

4.4.1. MOOCs and online resources

Massive Open Online Courses (MOOCs) and other online resources make logic
programming accessible to a global audience.

Krugel and Hubwieser [32] examines web-based learning in computer science,
providing “insights into progress and problems of learners in MOOCs”. Their findings
highlight both the advantages of online learning — flexibility regarding location and

409

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

time, possibilities for self-regulated learning — and challenges such as maintaining
motivation and addressing low completion rates.

Zhu and Bonk [66] offers guidelines for fostering self-directed online learning, pre-
senting practical instructional design strategies based on extensive research including
literature reviews, surveys, and MOOC instructor interviews. Their recommendations
address motivation, self-management, and self-monitoring skills crucial for success in
online learning environments.

Wang, Liu and Li [62] focuses on design variables for self-directed learning in MOOC
environments, examining factors that allow learning choices made by learners. Their
research identifies key design elements that support autonomous learning in online
contexts.

4.4.2. Automated assessment tools

Automated assessment tools play an increasingly important role in online logic
programming education, providing immediate feedback and supporting self-directed
learning.

Rajesh, Rao and Thushara [49] offers a comprehensive investigation of code assess-
ment tools in programming courses, noting that while manual assessment is effective,
automated tools can significantly enhance efficiency. Their evaluation of leading open-
source automated code assessment tools provides insights into assessment methods
and feedback mechanisms relevant to logic programming education.

Harimurti et al. [24] presents an automatic programming assessment tool that
integrates k-means clustering for student performance analysis. This approach
combines program evaluation with classification techniques to divide students into
performance groups, providing nuanced feedback on their progress.

Dewey et al. [13] demonstrates using constraint logic programming for evaluating
test suite effectiveness and assessing student code. Their approach generates test
suites automatically, identifying defects that might be missed by instructor-generated
tests and providing valuable feedback to students.

5. Challenges and obstacles

5.1. Cognitive challenges
Learning logic programming presents distinct cognitive challenges related to the
declarative nature of the paradigm and its execution model.

5.1.1. Declarative thinking barriers

The transition from imperative to declarative thinking represents a significant
cognitive barrier for many students.

Lovrencic and Sekovanic [37] observes that “students are often more familiar with
imperative paradigm, and therefore programming languages that belong to declarative
paradigm are even more demanding”. This familiarity with step-by-step, procedural
problem-solving can impede development of the declarative thinking required for logic
programming.

Bellstrom and Thorén [6] describes the challenge of teaching programming using a
syntax perspective when students come from diverse educational backgrounds. They
propose visualization as a strategy to “empower the logic component in the learning
process” and “facilitate an application perspective to achieve syntax”.

The lack of visual tools compounds these challenges. Vosinakis, Anastassakis and
Koutsabasis [60] notes that “the limited availability of visual teaching aids for LP can
lead to low motivation for learning”, highlighting how cognitive barriers interact with
motivational factors.

410

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

100
84 o
80 - il 75 o] 9 78
70 67] 68]
S 62 m]
S 60 [58 55 - |00 Traditional syntax-first
E’J] 51 00Problem-based learning
g 49 [0 Visualization-enhanced
© 40t -+ |00 Combined approach
]
o
20 - *
0 I @\ I ,Q‘
>
00& sz)r@ & 4‘0 ©
S i g
X S N &
<& & bé@ &
I & &
8) > %’
S o &
J vy
&
&
o

Performance metrics

Figure 5: Comparison of student performance metrics across different teaching methodologies
for logic programming. The combined approach integrating problem-based learning with
visualization tools shows the strongest outcomes across all metrics, particularly in long-term
retention. Data synthesized from studies by Awasekar [4], Vosinakis, Anastassakis and
Koutsabasis [60], and Ibarra-Torres et al. [26].

5.1.2. Execution model understanding

Understanding the execution model of logic programming languages — particularly
unification, resolution, and backtracking mechanisms — presents another significant
cognitive challenge.

Korner, Schneider and Leuschel [30] discusses the challenges of understanding
bytecode interpreters in Prolog, noting that “the semantics and the recursive execution
model of Prolog make it very natural to express language interpreters in form of AST
interpreters where the execution follows the tree representation of a program”. This
recursive execution model differs substantially from the sequential execution models
familiar to students from imperative programming.

Le [34] identifies common problems of Prolog novice programmers based on evalu-
ation of a constraint-based error diagnosis system. His findings highlight recurrent
misconceptions related to program execution and logical inference mechanisms.

These execution model challenges are particularly acute in Answer Set Programming.
Hansen et al. [21] conducted a data-driven analysis of common errors encountered by
novice SPARC programmers, identifying error classes and measuring their frequency
and difficulty of resolution. Their findings provide insight into the specific challenges
faced by students learning ASP’s execution model.

Figure 6 illustrates how prior programming experience, logical reasoning abilities,
declarative thinking, and understanding of the execution model influence each other,
creating a complex learning landscape for students.

5.2. Educational challenges
Beyond cognitive factors, educational challenges related to curriculum constraints
and faculty expertise affect logic programming instruction.

411

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838
Declarative Execution model
thinking . .
1) Unification
Focus on “what process
« ” impacts
not “how P Backtracking
Knowledge i
: mechanism
representation i
¢ . Resolution
Relationship rinciple
modeling P P
impedes enhances
Paradlfgm (Logical reasoning |
b f:rags er Pattern
rtcc.)r 1I]r31per— recognition
Ma 1tvei 1as(,j B R It en b) Recursive
en aﬂrpg € needs development thinking
. cgon ic ing Abstract
rogrammin i
roblem-solvin
L habits) 2 g

Figure 6: Interconnected cognitive challenges in learning logic programming.

5.2.1. Curriculum constraints

Limited time and competing priorities within computer science curricula create
challenges for logic programming education.

Boluk [8] discusses integrated curriculum design as a strategy to address these
constraints, advocating for uniting core courses to create a more coherent learning
experience. This approach can help position logic programming within a broader
educational context rather than treating it as an isolated subject.

Anderson [2] examines overarching goals, values, and assumptions of integrated
curriculum design, noting that such approaches “ignore subject-matter lines of delin-
eation” to bring together separate pieces of a curriculum. This integration requires
careful consideration of how logic programming concepts connect with other curricular
elements.

The position of logic programming within computing curricula raises questions
about its continued relevance. Hynek [25] asks whether there are “still some good and
justified reasons to keep Logic Programming in the present ICT specialists curricula”,
reflecting the tensions between traditional logic-based approaches and emerging
programming paradigms.

5.2.2. Faculty expertise limitations

Faculty expertise limitations also impact logic programming education, as instruc-
tors may lack sufficient background in declarative programming paradigms.

Ibarra-Torres et al. [26] notes the challenge of “teaching programming logic to
students who do not have a background in computer science”, observing that “the
instructor has to awaken problem-solving, critical thinking, and logical reasoning
skills”. This challenge is compounded when instructors themselves have limited
experience with logic programming.

Msweli, Mawela and Twinomurinzi [41] discusses transdisciplinary teaching prac-
tices, noting that “teaching data science programmes poses challenges for instructors
due to the transdisciplinarity of the field and the diverse backgrounds and skill levels
of students”. Similar challenges arise in logic programming education, where instruc-

412

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

tors must bridge multiple disciplines including formal logic, computer science, and
specific application domains.

Resource limitations compound these challenges. Nipyrakis and Stavrou [42] ex-
amines the integration of information and communication technologies in education,
finding that student teachers “addressed difficulties in ’actively’ integrating technology
not only due to lack of content and technological content knowledge needed, but
also due to cultural incompatibilities with the innovative and student-centered affor-
dances” of new educational technologies. These same limitations affect the adoption
of innovative teaching approaches for logic programming.

5.3. Motivational challenges
Motivational challenges significantly impact student engagement and persistence in
logic programming courses.

5.3.1. Perceived relevance issues

Students’ perceptions of relevance strongly influence their motivation to learn logic
programming.

Miranda Junior, Oliveira and Mistris [40] observes that “the teaching of computa-
tional logic in courses of various levels of education has been a challenge for teachers
and docents in the area, as they experience the reality of a high number of course
evasion and lack of student motivation”. This lack of motivation often stems from
students’ uncertainty about the practical applications of logic programming skills.

The abstract nature of logic programming contributes to this challenge. Unlike web
development or mobile application programming, the benefits of logic programming
may be less immediately apparent to students. Vosinakis, Koutsabasis and Anastas-
sakis [61] notes that logic programming “being based on a fundamentally different
paradigm and lacking any visual tools for inexperienced users” can lead to “confusion
and low student motivation”.

Kheirkhahzadeh, Sauer and Fotaris [29] argues that “the concept of software engi-
neering introduced in the class needs to be revised and become more engaging” to
address motivational issues. Their research on gamification of competitive learning ex-
periences demonstrates how contextualizing programming within engaging frameworks
can enhance motivation.

5.3.2. Student engagement

Achieving and maintaining student engagement represents a persistent challenge in
logic programming education.

Sharma, Shen and Goodwin [53] identifies lack of engagement as “a key determinant
of a student’s poor performance” in programming courses. They propose using
voluntary participation in discussion forums as an engagement indicator, allowing
instructors to “monitor and re-engage those who present low or no engagement” in
large programming classes.

Problem-based learning offers one approach to enhancing engagement. Souza and
Bittencourt [55] analyzes motivation and engagement with PBL in an introductory pro-
gramming course, finding that the approach positively relates to “students’ attention
and relevance”. However, they caution that “careful problem design and planning” is
necessary to achieve positive motivational outcomes.

Pereira and Seabra [46] presents an open educational resource for studying algo-
rithms and programming logic, finding that the tool “was very well accepted, being
effective in facilitating and assisting participants in their learning, motivation, and
interest in classes”. Their findings suggest that tailored educational resources can
significantly enhance student engagement in logic programming contexts.

413

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

The model in figure 7 highlights key threshold concepts that represent significant
cognitive leaps, as well as common sticking points where students often struggle.
Understanding this progression can help educators design appropriate scaffolding and
interventions.

Threshold:

Execution
Basic syntax Recursive Complex Meta-
& facts rules queries programming

Common sticking point| Common sticking point|Common sticking point

— — —

Simple rules : Backtracking Cuts. & Advar}ced
! negation paradigms

Threshold:
Declarative

Threshold:

Non-
determinism

thinking

Figure 7: Typical learning progression model in logic programming, from novice to proficient
programmer.

6. Emerging trends and innovations

The field of logic programming education continues to evolve, with several emerging
trends showing particular promise.

6.1. Integration with other paradigms

Integration of logic programming with other programming paradigms represents a
significant trend, offering students a more comprehensive computational perspective.

Multi-paradigm languages like Curry, described by Hanus [23], combine functional
and logic programming, enabling students to explore the strengths of both approaches.
This integration provides “a common platform for the research, teaching, and applica-
tion of integrated functional logic languages”.

Cross-paradigm teaching, as explored by Ragonis and Haberman [48], helps stu-
dents understand the relationships between different programming approaches. By
explicitly comparing object-oriented and logic programming paradigms, educators can
help students develop more flexible computational thinking skills.

Educational frameworks that integrate multiple paradigms, such as the ontology
presented by Oprea [43], provide conceptual structures that support student under-
standing of the relationships between programming approaches. These frameworks
help learners navigate the complex landscape of programming paradigms.

6.2. Domain-specific applications

Domain-specific applications of logic programming enhance relevance and provide
authentic learning contexts.

Zhang et al. [65] demonstrates integrating logic programming with science education,
developing modules for chemistry and physics implemented for middle school students.

414

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

This approach connects logic programming concepts with existing curricular content,
enhancing perceived relevance.

General Game Playing, advocated by Genesereth [20] as a “killer app for Logic Pro-
gramming”, provides an engaging application domain for teaching logic programming
concepts. By exploring game description, game playing, and metagaming, students
can develop both programming skills and strategic thinking abilities.

del Vado Virseda and Morente [12] presents an innovative teaching tool based
on semantic tableaux for verification and debugging of imperative programs. This
application connects logic programming with software engineering practices, helping
students appreciate the practical utility of formal methods.

6.3. New tools and platforms

Innovative tools and platforms continue to enhance logic programming education.

Online learning environments like onlineSPARC, presented by Marcopoulos and
Zhang [39], provide accessible platforms for learning logic programming without the
complexity of software installation. These environments enable “teaching it to general
undergraduate and even middle/high school students” by removing technical barriers.

Specialized visualization tools like ASPECT, developed by Bertagnon and Gavanelli
[7], help students interpret complex logic programming outputs through graphical
representations. These tools address specific challenges related to understanding the
results of logic programs.

Automated assessment tools, such as the system described by Rajesh, Rao and
Thushara [49], provide immediate feedback and support self-directed learning. These
tools are particularly valuable in online and blended learning contexts, where instruc-
tor availability may be limited.

6.4. Pedagogical innovations

Pedagogical innovations address specific challenges in logic programming education.

Problem-based learning approaches, implemented through structured frameworks
like those described by Tiantong and Teemuangsai [57], provide scaffolding that
supports students as they develop logic programming skills. These approaches help
manage cognitive load while promoting active learning.

Gamification strategies, such as those explored by Rodriguez and Cecchi [50]
through the Metagame methodology, enhance engagement by incorporating game
elements into the learning process. These approaches are particularly effective for
introducing logic programming concepts to younger learners.

Adaptive learning systems, exemplified by the user-adaptive explanatory program
visualization studied by Loboda and Brusilovsky [36], personalize the learning experi-
ence based on student performance and preferences. These systems hold particular
promise for addressing the diverse needs of logic programming students.

7. Recommendations for practice

Based on the literature review, several evidence-based recommendations emerge for
logic programming education.

Effective curriculum design should position logic programming within broader edu-
cational contexts:

* connect logic programming with artificial intelligence, formal methods, and
database concepts to enhance perceived relevance and promote knowledge trans-
fer;

¢ introduce logic programming concepts progressively, revisiting core ideas with
increasing sophistication as students develop expertise;

415

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838
Visualization Problem- Integrated Online
tools based curricula resources
learning
Declarative High High Medium Medium
thinking effectiveness effectiveness effectiveness effectiveness
barriers
Execution High Medium Low Medium
model un- effectiveness effectiveness effectiveness effectiveness
derstanding
Curriculum Medium Low High High
time con- effectiveness effectiveness effectiveness effectiveness
straints
Faculty Low Medium Low High
expertise effectiveness effectiveness effectiveness effectiveness
limitations
Perceived Medium High High Medium
relevance effectiveness effectiveness effectiveness effectiveness
issues
Student High High Medium Medium
engagement effectiveness effectiveness effectiveness effectiveness

Figure 8: Matrix mapping specific challenges in logic programming education to solution
approaches. Color coding indicates effectiveness based on empirical evidence: green (high),
yellow (medium), and red (low).

¢ combine focused instruction on language syntax with problem-solving activities
that develop computational thinking skills;

* expose students to multiple logic programming paradigms (Prolog, ASP, Datalog,
CLP) to develop a comprehensive understanding of declarative programming.

Effective teaching methodologies address cognitive, educational, and motivational
challenges:

* use graphical representations of program execution and results to enhance
understanding of abstract concepts;

¢ situate logic programming instruction within authentic problem contexts that
demonstrate practical applications;

¢ offer structured support that gradually fades as students develop confidence and
competence in logic programming;

* design group activities that promote peer learning and collective problem-solving
using logic programming techniques.

416

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

Assessment approaches should align with the unique characteristics of logic pro-
gramming:

* assess both the quality of final programs and the problem-solving processes
students employ during development;

* use automated tools to provide immediate feedback on syntax errors and logical
inconsistencies in student programs;

* design assessments that reflect real-world applications of logic programming in
domains such as artificial intelligence and knowledge representation;

¢ provide ongoing feedback throughout the learning process to identify and address
misconceptions early.

Strategic technology integration enhances the effectiveness of logic programming
education:

* choose programming environments with features that support novice learners,
such as syntax highlighting, visualization tools, and error explanations;

¢ utilize web-based environments that eliminate installation complexity and enable
anywhere, anytime learning;

* implement adaptive systems that provide personalized guidance based on indi-
vidual student needs and progress;

* consider using virtual worlds and simulations that provide concrete representa-
tions of abstract logic programming concepts.

Prolog ASP Datalog Model

Execution Microworlds

SWI-Prolog onlineSPARC DES Logichart ASPECT MeLoISE
SICStus ASPIDE Soulfflé Prolog Tracer ASP-VISU Virtual Worlds
Ciao clingo Logica VIPER DLV-Explorer Simulations

Development Visualization
environments tools

Logic
programming
educational
ecosystem

Assessment Problem
platforms repositories

Automated Real-world

k-means Tutoring Online Games Science
clustering INCOM C&T&C)gp L P,“zz“’sl General integration
CLP-based AFFLOG ogic p.u 2z es. Game Playing Planning
. . platforms Cryptarithmetig
testing Constraint- Web as- Sudoku Metagame problems

Error di- based
agnosis

MAFIA Protein

signments modeling

Figure 9: The logic programming educational tool ecosystem, showing the relationships

between development environments, visualization tools, assessment platforms, and problem
repositories across different paradigms.

417

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

8. Research gaps and future directions

Despite significant advances in logic programming education, several research gaps
remain that warrant further investigation.

More rigorous empirical studies are needed to evaluate the effectiveness of different
teaching approaches for logic programming. Future research should:

conduct controlled studies comparing different instructional methodologies
across diverse student populations;

implement longitudinal research examining the long-term retention and transfer
of logic programming knowledge;

explore the impact of integrated curriculum approaches on student understand-
ing and motivation;

investigate the effectiveness of visualization tools for different aspects of logic
programming (e.g., execution model, problem solving, debugging).

Stronger connections with cognitive and learning sciences could enhance understand-
ing of how students learn logic programming:

investigate the cognitive processes involved in shifting from imperative to declar-
ative thinking;

examine the development of mental models for logic programming execution
mechanisms;

apply cognitive load theory to optimize instructional designs for logic program-
ming education;

study the impact of prior programming experience on learning outcomes in logic
programming courses.

Research on integrating logic programming education with emerging technologies
could open new pedagogical opportunities:

explore applications of virtual and augmented reality for logic programming
visualization;

investigate the role of artificial intelligence in providing adaptive guidance for
logic programming students;

develop and evaluate intelligent tutoring systems specialized for logic program-
ming education;

study the effectiveness of game-based learning approaches for different logic
programming paradigms.

Future research should address cross-cultural and accessibility aspects of logic
programming education:

investigate how cultural factors influence the effectiveness of different teaching
approaches for logic programming;

develop and evaluate accessible teaching materials and tools for students with
disabilities;

explore strategies for making logic programming education more inclusive and
equitable across diverse student populations;

study international variations in curriculum integration and teaching methodolo-
gies for logic programming.

418

https://doi.org/10.55056/cte.838

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

9. Conclusion

This review has examined current approaches to teaching logic programming across
its major paradigms, identifying effective strategies, common challenges, and emerging
trends. The findings highlight the multifaceted nature of logic programming education,
encompassing cognitive, educational, and motivational dimensions that must be
addressed through comprehensive pedagogical approaches.

Visualization tools, problem-based learning, integration with other programming
paradigms, and contextual application-based approaches demonstrate the most
promise for enhancing student comprehension and engagement. These approaches
address the fundamental cognitive challenge of developing declarative thinking skills
while making abstract logic programming concepts concrete and accessible.

The educational landscape for logic programming continues to evolve, with on-
line environments, interactive tools, and integrated curriculum approaches offering
new possibilities for effective instruction. These innovations help position logic pro-
gramming within broader educational contexts, enhancing perceived relevance and
supporting knowledge transfer across domains.

Despite these advances, significant research gaps remain. Future studies should
employ more rigorous empirical methodologies to evaluate teaching effectiveness,
explore connections with cognitive and learning sciences, investigate integration with
emerging technologies, and address cross-cultural and accessibility considerations in
logic programming education.

Logic programming, with its foundation in formal logic and applications in artificial
intelligence, knowledge representation, and constraint solving, remains a valuable
component of computer science education. By implementing evidence-based teaching
strategies and continuing to innovate instructional approaches, educators can help
students develop the declarative thinking skills that complement procedural and
object-oriented programming knowledge, preparing them for the diverse computational
challenges of the future.

Declaration on generative Al: During the preparation of this work, the authors used Claude 3.7
Sonnet to improve writing style. After using this tool, the authors reviewed and edited the content as
needed and took full responsibility for the publication’s content.

References

[1] Adachi, Y., 2008. Prolog visualization system using Logichart diagrams. 18th
Workshop on Logic-based methods in Programming Environments, WLPE 2008.
pp-8-18. Available from: http://arxiv.org/abs/0903.2207.

[2] Anderson, D.M., 2013. Overarching Goals, Values, and Assumptions of Inte-
grated Curriculum Design. SCHOLE: A Journal of Leisure Studies and Recreation
Education, 28(1), pp.1-10. Available from: https://doi.org/10.1080/1937156X.
2013.11949690.

[3] Apt, K.R. and Wallace, M., 2006. Constraint logic programming using ECLiPSe.
Cambridge University Press. https://www.researchgate.net/publication/
220693610, Available from: https://doi.org/10.1017/CB09780511607400.

[4] Awasekar, D.D., 2013. Effect of Program Visualization to Teach Computer Pro-
gramming in a Resource Constrained Classroom. 2013 IEEE Fifth International
Conference on Technology for Education (t4e 2013). pp.93-100. Available from:
https://doi.org/10.1109/T4E.2013.31.

[5] Badica, A., Badica, C. and Ivanovic, M., 2020. Block structured scheduling using
constraint logic programming. AI Communications, 33(1), pp.41-57. Available
from: https://doi.org/10.3233/AIC-200650.

419

https://doi.org/10.55056/cte.838
http://arxiv.org/abs/0903.2207
https://doi.org/10.1080/1937156X.2013.11949690
https://doi.org/10.1080/1937156X.2013.11949690
https://www.researchgate.net/publication/220693610
https://www.researchgate.net/publication/220693610
https://doi.org/10.1017/CBO9780511607400
https://doi.org/10.1109/T4E.2013.31
https://doi.org/10.3233/AIC-200650

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

(6]

(7]

[8

et

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

Bellstréom, P. and Thorén, C., 2009. Learning how to program through visualiza-
tion: A pilot study on the bubble sort algorithm. 2nd International Conference
on the Applications of Digital Information and Web Technologies, ICADIWT 2009.
pp-90-94. Available from: https://doi.org/10.1109/ICADIWT.2009.5273943.
Bertagnon, A. and Gavanelli, M., 2024. ASPECT: Answer Set rePresentation as
vEctor graphiCs in laTex. Journal of Logic and Computation, 34(8), pp.1580-1607.
Available from: https://doi.org/10.1093/LOGCOM/EXAE042.

Boluk, K.A., 2023. Integrated Curriculum Design: An Empowering and Engaging
Pedagogical Approach Preparing 21st Graduates. SCHOLE: A Journal of Leisure
Studies and Recreation Education, 38(3), pp.224-229. Available from: https:
//doi.org/10.1080/1937156X.2022.2099326.

Choo, S.S.Y., 2012. Scaffolding in Problem-based Learning. In: G. O’Grady, E.H.
Yew, K.P. Goh and H.G. Schmidt, eds. One-Day, One-Problem: An Approach to
Problem-based Learning. Singapore: Springer Singapore, pp.167-184. Available
from: https://doi.org/10.1007/978-981-4021-75-3_8.

Cuteri, B. and Ricca, F., 2017. A compiler for stratified datalog programs: prelim-
inary results. In: S. Flesca, S. Greco, E. Masciari and D. Sacca, eds. Proceedings
of the 25th Italian Symposium on Advanced Database Systems, Squillace Lido
(Catanzaro), Italy, June 25-29, 2017. CEUR-WS.org, CEUR Workshop Proceedings,
vol. 2037, p.158. Available from: https://ceur-ws.org/Vol-2037 /paper_23.pdf.
Dal Palu, A., Dovier, A., Fogolari, F. and Pontelli, E., 2011. Exploring protein
fragment assembly using CLP. Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume Three. AAAI Press,
IJCATI'11, p.2590-2595. Available from: https://www.ijcai.org/Proceedings/11/
Papers/431.pdf.

del Vado Virseda, R. and Morente, F.P., 2011. An Innovative Teaching Tool based
on Semantic Tableaux for Verification and Debugging of Imperative Programs.
Procedia Computer Science, 4, pp.1907-1916. Proceedings of the International
Conference on Computational Science, ICCS 2011. Available from: https://doi.
org/10.1016/j.procs.2011.04.208.

Dewey, K., Conrad, P., Craig, M. and Morozova, E., 2017. Evaluating Test
Suite Effectiveness and Assessing Student Code via Constraint Logic Program-
ming. Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education. New York, NY, USA: Association for Computing
Machinery, ITiCSE 17, p.317-322. Available from: https://doi.org/10.1145/
3059009.3059051.

El-Khatib, O., Pontelli, E. and Son, T.C., 2006. A Tool for Knowledge Base
Integration and Querying. Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and Question Answering, Papers from
the 2006 AAAI Spring Symposium, Technical Report SS-06-05, Stanford, California,
USA, March 27-29, 2006. AAAI, pp.16-21. Available from: http://www.aaai.org/
Library/Symposia/Spring/2006/ss06-05-003.php.

Eppler, M.J., 2006. A Comparison between Concept Maps, Mind Maps, Concep-
tual Diagrams, and Visual Metaphors as Complementary Tools for Knowledge
Construction and Sharing. Information Visualization, 5(3), pp.202-210. Available
from: https://doi.org/10.1057 /palgrave.ivs.9500131.

Fages, F., 2024. On Teaching Constraint-based Modeling and Algorithms for
Decision Support in Prolog. In: J. Arias, D. Azzolini, K. Basu, V. Dahl, M. Hecher,
F. Pacenza, Z.G. Saribatur and S.C. Varanasi, eds. Workshop Proceedings of the
40th International Conference on Logic Programming (ICLP-WS 2024) co-located with
the 40th International Conference on Logic Programming (ICLP 2024), Dallas, TX,
USA, October 12th and 13th, 2024. CEUR-WS.org, CEUR Workshop Proceedings,

420

https://doi.org/10.55056/cte.838
https://doi.org/10.1109/ICADIWT.2009.5273943
https://doi.org/10.1093/LOGCOM/EXAE042
https://doi.org/10.1080/1937156X.2022.2099326
https://doi.org/10.1080/1937156X.2022.2099326
https://doi.org/10.1007/978-981-4021-75-3_8
https://ceur-ws.org/Vol-2037/paper_23.pdf
https://www.ijcai.org/Proceedings/11/Papers/431.pdf
https://www.ijcai.org/Proceedings/11/Papers/431.pdf
https://doi.org/10.1016/j.procs.2011.04.208
https://doi.org/10.1016/j.procs.2011.04.208
https://doi.org/10.1145/3059009.3059051
https://doi.org/10.1145/3059009.3059051
http://www.aaai.org/Library/Symposia/Spring/2006/ss06-05-003.php
http://www.aaai.org/Library/Symposia/Spring/2006/ss06-05-003.php
https://doi.org/10.1057/palgrave.ivs.9500131

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

vol. 3799. Available from: https://ceur-ws.org/Vol-3799/short7PEG2.0.pdf.
Gavanelli, M. and Rossi, F., 2010. Constraint Logic Programming. In: A. Dovier
and E. Pontelli, eds. A 25-Year Perspective on Logic Programming: Achievements of
the Italian Association for Logic Programming, GULP. Berlin, Heidelberg: Springer
Berlin Heidelberg, Lecture Notes in Computer Science, vol. 6125, pp.64-86. Avail-
able from: https://doi.org/10.1007/978-3-642-14309-0_4.

Gebser, M., Obermeier, P., Otto, T., Schaub, T., Sabuncu, O., Nguyen, V. and
Son, T.C., 2018. Experimenting with robotic intra-logistics domains. Theory
and Practice of Logic Programming, 18(3-4), pp.502-519. Available from: https:
//doi.org/10.1017/S1471068418000200.

Gelfond, G., Balduccini, M., Ferrucci, D., Kalyanpur, A. and Lally, A., 2023.
Machines as Thought Partners: Reflections on 50 Years of Prolog. In: D.S.
Warren, V. Dahl, T. Eiter, M.V. Hermenegildo, R. Kowalski and F. Rossi, eds.
Prolog: The Next 50 Years. Cham: Springer Nature Switzerland, Lecture Notes in
Computer Science, vol. 13900, pp.386-392. Available from: https://doi.org/10.
1007/978-3-031-35254-6_31.

Genesereth, M.R., 2024. General Game Playing - Killer App for Logic Program-
ming. In: J. Arias, D. Azzolini, K. Basu, V. Dahl, M. Hecher, F. Pacenza, Z.G.
Saribatur and S.C. Varanasi, eds. Workshop Proceedings of the 40th International
Conference on Logic Programming (ICLP-WS 2024) co-located with the 40th Interna-
tional Conference on Logic Programming (ICLP 2024), Dallas, TX, USA, October 12th
and 13th, 2024. CEUR-WS.org, CEUR Workshop Proceedings, vol. 3799. Available
from: https://ceur-ws.org/Vol-3799/short3PEG2.0.pdf.

Hansen, Z., Du, H., Xing, W., Eckel, R., Lugo, J. and Zhang, Y., 2022. A Pre-
liminary Data-driven Analysis of Common Errors Encountered by Novice SPARC
Programmers. In: Y. Lierler, J.F. Morales, C. Dodaro, V. Dahl, M. Gebser and
K.T. Tekle, eds. Proceedings 38th International Conference on Logic Program-
ming, ICLP 2022 Technical Communications / Doctoral Consortium, Haifa, Israel,
31st July 2022 - 6th August 2022. EPTCS, vol. 364, pp.12-24. Available from:
https://doi.org/10.4204/EPTCS.364.2.

Hanus, M., 2007. Multi-paradigm Declarative Languages. In: V. Dahl and
I. Niemel4, eds. Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
Lecture Notes in Computer Science, vol. 4670 LNCS, pp.45-75. Available from:
https://doi.org/10.1007 /978-3-540-74610-2_5.

Hanus, M., 2013. Functional Logic Programming: From Theory to Curry. In:
A. Voronkov and C. Weidenbach, eds. Programming Logics: Essays in Memory of
Harald Ganzinger. Berlin, Heidelberg: Springer Berlin Heidelberg, Lecture Notes
in Computer Science, vol. 7797, pp.123-168. Available from: https://doi.org/10.
1007/978-3-642-37651-1_6.

Harimurti, R., Ekohariadi, Munoto and Asto Buditjahjanto, I.G.P., 2021. Integrat-
ing k-means clustering into automatic programming assessment tool for student
performance analysis. Indonesian Journal of Electrical Engineering and Computer
Science, 22(3), pp.1389-1395. Available from: https://doi.org/10.11591 /ijeecs.
v22.i3.pp1389-1395.

Hynek, J., 2018. The Role of Logic Programming in ICT Specialists Curricula.
2018 28th EAEEIE Annual Conference (EAEEIE). pp.1-9. Available from: https:
//doi.org/10.1109/EAEEIE.2018.8534297.

Ibarra-Torres, F., Caiza, G., Garcia, M.V. and Barona-Pico, V., 2024. Use of
basic programming tools to foster programming logic in university students with
school preparation other than computer science. Procedia Computer Science,
237, pp.413-419. International Conference on Industry Sciences and Computer
Science Innovation. Available from: https://doi.org/10.1016/j.procs.2024.05.

421

https://doi.org/10.55056/cte.838
https://ceur-ws.org/Vol-3799/short7PEG2.0.pdf
https://doi.org/10.1007/978-3-642-14309-0_4
https://doi.org/10.1017/S1471068418000200
https://doi.org/10.1017/S1471068418000200
https://doi.org/10.1007/978-3-031-35254-6_31
https://doi.org/10.1007/978-3-031-35254-6_31
https://ceur-ws.org/Vol-3799/short3PEG2.0.pdf
https://doi.org/10.4204/EPTCS.364.2
https://doi.org/10.1007/978-3-540-74610-2_5
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.11591/ijeecs.v22.i3.pp1389-1395
https://doi.org/10.11591/ijeecs.v22.i3.pp1389-1395
https://doi.org/10.1109/EAEEIE.2018.8534297
https://doi.org/10.1109/EAEEIE.2018.8534297
https://doi.org/10.1016/j.procs.2024.05.122
https://doi.org/10.1016/j.procs.2024.05.122

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

122.

Jones, N.D., Azzam, T., Wanzer, D.L., Skousen, D., Knight, C. and Sabarre,
N., 2020. Enhancing the Effectiveness of Logic Models. American Journal
of Evaluation, 41(3), pp.452-470. Available from: https://doi.org/10.1177/
1098214018824417.

Kerdprasop, N. and Kerdprasop, K., 2011. Frequent pattern discovery with
constraint logic programming. International Journal of Mathematical Models
and Methods in Applied Sciences, 5(8), pp.1345-1353. Available from: https:
/ /www.researchgate.net/publication/286164687.

Kheirkhahzadeh, A.D., Sauer, C.S. and Fotaris, P., 2016. Practice makes perfect -
Gamification of a competitive learning experience. Proceedings of the European
Conference on Games-based Learning. pp.327-335. Available from: https://www.
researchgate.net/publication/309034354.

Korner, P., Schneider, D. and Leuschel, M., 2021. On the Performance of Bytecode
Interpreters in Prolog. In: M. Hanus and C. Sacerdoti Coen, eds. Functional and
Constraint Logic Programming. Cham: Springer International Publishing, vol.
12560, pp.41-56. Available from: https://doi.org/10.1007/978-3-030-75333-7_
3.

Kowalski, R., 2013. Logic Programming in the 1970s. In: P. Cabalar and T.C.
Son, eds. Logic Programming and Nonumonotonic Reasoning. Berlin, Heidelberg:
Springer Berlin Heidelberg, Lecture Notes in Computer Science, vol. 8148, pp.11-
22. Available from: https://doi.org/10.1007/978-3-642-40564-8_2.

Krugel, J. and Hubwieser, P., 2020. Web-Based Learning in Computer Science:
Insights into Progress and Problems of Learners in MOOCs. In: M. Giannakos,
ed. Non-Formal and Informal Science Learning in the ICT Era. Singapore: Springer
Singapore, Lecture Notes in Educational Technology, pp.51-79. Available from:
https://doi.org/10.1007/978-981-15-6747-6_4.

Lape, N.K., 2011. Tiered scaffolding of Problem-Based Learning techniques in a
Thermodynamics course. 2011 ASEE Annual Conference & Exposition. Vancouver,
BC: ASEE Conferences. Available from: https://doi.org/10.18260/1-2--18365.
Le, N.T., 2005. Evaluation of a Constraint-based Error Diagnosis System for Logic
Programming. Proceedings of the 2005 Conference on Towards Sustainable and
Scalable Educational Innovations Informed by the Learning Sciences: Sharing Good
Practices of Research, Experimentation and Innovation. NLD: IOS Press, p.965-966.
Available from: https://www.researchgate.net/publication/221319184.

Ligeza, A., 2006. Logic Programming and Prolog. Logical Foundations for Rule-
Based Systems. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, Studies
in Computational Intelligence, vol. 11, pp.173-188. Available from: https://doi.
org/10.1007/3-540-32446-1_11.

Loboda, T.D. and Brusilovsky, P., 2010. User-adaptive explanatory program
visualization: evaluation and insights from eye movements. User Modeling and
User-Adapted Interaction, 20(3), pp.191-226. Available from: https://doi.org/10.
1007/s11257-010-9077-1.

Lovrencic, S. and Sekovanic, V., 2023. How Well Students Perceive Their Un-
derstanding of Logic Programming Course Content? In: D. Cisic, N. Vrcek,
M. Koricic, V. Gradisnik, K. Skala, Z. Car, M. Cicin-Sain, S. Babic, V. Sruk,
D. Skvorc, A. Jovic, S. Gros, B. Vrdoljak, E. Tijan, T. Katulic, J. Petrovic, T.G.
Grbac and L. Bozicevic, eds. 46th MIPRO ICT and Electronics Convention, MIPRO
2023, Opatija, Croatia, May 22-26, 2023. IEEE, pp.824-828. Available from:
https://doi.org/10.23919/MIPRO57284.2023.10159945.

Malandrino, D., Guarino, A., Lettieri, N. and Zaccagnino, R., 2019. On the
Visualization of Logic: A Diagrammatic Language Based on Spatial, Graphical

422

https://doi.org/10.1016/j.procs.2024.05.122
https://doi.org/10.1016/j.procs.2024.05.122
https://doi.org/10.55056/cte.838
https://doi.org/10.1016/j.procs.2024.05.122
https://doi.org/10.1177/1098214018824417
https://doi.org/10.1177/1098214018824417
https://www.researchgate.net/publication/286164687
https://www.researchgate.net/publication/286164687
https://www.researchgate.net/publication/309034354
https://www.researchgate.net/publication/309034354
https://doi.org/10.1007/978-3-030-75333-7_3
https://doi.org/10.1007/978-3-030-75333-7_3
https://doi.org/10.1007/978-3-642-40564-8_2
https://doi.org/10.1007/978-981-15-6747-6_4
https://doi.org/10.18260/1-2--18365
https://www.researchgate.net/publication/221319184
https://doi.org/10.1007/3-540-32446-1_11
https://doi.org/10.1007/3-540-32446-1_11
https://doi.org/10.1007/s11257-010-9077-1
https://doi.org/10.1007/s11257-010-9077-1
https://doi.org/10.23919/MIPRO57284.2023.10159945

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

and Symbolic Notations. In: E. Banissi, A. Ursyn, M.W.M. Bannatyne, N. Datia,
R. Francese, M. Sarfraz, T.G. Wyeld, F. Bouali, G. Venturini, H. Azzag, M. Leb-
bah, M. Trutschl, U. Cvek, H. Muller, M. Nakayama, S. Kernbach, L. Caruccio,
M. Risi, U. Erra, A. Vitiello and V. Rossano, eds. 23rd International Conference
on Information Visualisation, IV 2019, Paris, France, July 2-5, 2019, Part I. IEEE,
pp-7-12. Available from: https://doi.org/10.1109/1V.2019.00011.
Marcopoulos, E. and Zhang, Y., 2019. onlineSPARC: A Programming Environment
for Answer Set Programming. Theory and Practice of Logic Programming, 19(2),
PP-262-289. Available from: https://doi.org/10.1017/S1471068418000509.
Miranda Junior, A., Oliveira, O.C. and Mistris, A., 2018. CeTeCop - Concep-
tual framework collaborative for learning development and programming. In:
P. Isaias and H. Weghorn, eds. Proceedings of the International Conferences on
WWW/Internet 2018 and Applied Computing 2018. pp.59-66. Available from:
https://tinyurl.com/4tkd9rdm.

Msweli, N.T., Mawela, T. and Twinomurinzi, H., 2023. Transdisciplinary teaching
practices for data science education: A comprehensive framework for integrating
disciplines. Social Sciences & Humanities Open, 8(1), p.100628. Available from:
https://doi.org/10.1016/j.ssaho0.2023.100628.

Nipyrakis, A. and Stavrou, D., 2022. Integration of ICT in Science Education
Laboratories by Primary Student Teachers. In: S. Papadakis and M. Kalogian-
nakis, eds. STEM, Robotics, Mobile Apps in Early Childhood and Primary Education:
Technology to Promote Teaching and Learning. Singapore: Springer Nature Sin-
gapore, Lecture Notes in Educational Technology, pp.55-78. Available from:
https://doi.org/10.1007/978-981-19-0568-1_4.

Oprea, M., 2019. Onto-DeclarProg: An Educational Ontol-
ogy for Declarative Programming. Proceedings of the 14th Inter-
national Conference On Virtual Learning. Bucharest University
Press, pp-37-43. Available from: https://icvl.eu/documents/3/

430216179-Proceedings-of-ICVL-2019-ISSN- 1844-8933-ISI-Proceedings.pdf.
Page, R., 2009. Computational logic in the undergraduate curriculum. Proceed-
ings of the Eighth International Workshop on the ACL2 Theorem Prover and Its
Applications. New York, NY, USA: Association for Computing Machinery, ACL2
‘09, p.29-32. Available from: https://doi.org/10.1145/1637837.1637842.
Paramonov, S., Bessiere, C., Dries, A. and Raedt, L.D., 2018. Sketched Answer
Set Programming. In: L.H. Tsoukalas, E. Grégoire and M. Alamaniotis, eds.
IEEE 30th International Conference on Tools with Artificial Intelligence, ICTAI
2018, 5-7 November 2018, Volos, Greece. IEEE, pp.694-701. Available from:
https://doi.org/10.1109/ICTAI.2018.00110.

Pereira, D.E.F. and Seabra, R.D., 2023. Open Educational Resource for Studying
Algorithms and Programming Logic: An Approach to the Technical Level Integrated
with Secondary School. Informatics in Education, 22(3), pp.441-462. Available
from: https://doi.org/10.15388/infedu.2023.17.

Perez-Lancho, B., Jorge, E., Viuda, A. de la and Sanchez, R., 2007. Software Tools
in Logic Education: Some Examples. Logic Journal of the IGPL, 15(4), pp.347-357.
Available from: https://doi.org/10.1093/jigpal/jzm025.

Ragonis, N. and Haberman, B., 2010. Linking different programming paradigms:
thoughts about instructional design. Proceedings of the Fifteenth Annual Confer-
ence on Innovation and Technology in Computer Science Education. New York, NY,
USA: Association for Computing Machinery, ITiCSE °10, p.310. Available from:
https://doi.org/10.1145/1822090.1822187.

Rajesh, S., Rao, V.V. and Thushara, M.G., 2024. Comprehensive Investigation of
Code Assessment Tools in Programming Courses. 2024 IEEE 9th International

423

https://doi.org/10.55056/cte.838
https://doi.org/10.1109/IV.2019.00011
https://doi.org/10.1017/S1471068418000509
https://tinyurl.com/4tkd9rdm
https://doi.org/10.1016/j.ssaho.2023.100628
https://doi.org/10.1007/978-981-19-0568-1_4
https://icvl.eu/documents/3/430216179-Proceedings-of-ICVL-2019-ISSN-1844-8933-ISI-Proceedings.pdf
https://icvl.eu/documents/3/430216179-Proceedings-of-ICVL-2019-ISSN-1844-8933-ISI-Proceedings.pdf
https://doi.org/10.1145/1637837.1637842
https://doi.org/10.1109/ICTAI.2018.00110
https://doi.org/10.15388/infedu.2023.17
https://doi.org/10.1093/jigpal/jzm025
https://doi.org/10.1145/1822090.1822187

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Conference for Convergence in Technology (I2CT). pp.1-6. Available from: https:
//doi.org/10.1109/12CT61223.2024.10543863.

Rodriguez, J.P. and Cecchi, L.A., 2024. Logic Programming in Primary School:
Facing Computer Science at an Early Age. L Latin American Computer Conference,
CLEI 2024, Buenos Aires, Argentina, August 12-16, 2024. IEEE, pp.1-9. Available
from: https://doi.org/10.1109/CLEI64178.2024.107001083.

Saenz-Pérez, F., 2011. DES: A Deductive Database System. Electronic Notes in
Theoretical Computer Science, 271, pp.63-78. Proceedings of the Tenth Spanish
Conference on Programming and Languages (PROLE 2010). Available from:
https://doi.org/10.1016/j.entcs.2011.02.011.

Schaub, T. and Woltran, S., 2018. Answer set programming unleashed! KI -
Kiinstliche Intelligenz, 32(2), pp.105-108. Available from: https://doi.org/10.
1007/s13218-018-0550-z.

Sharma, R., Shen, H. and Goodwin, R., 2016. Voluntary participation in discus-
sion forums as an engagement indicator: an empirical study of teaching first-year
programming. Proceedings of the 28th Australian Conference on Computer-Human
Interaction. New York, NY, USA: Association for Computing Machinery, OzCHI '16,
p-489-493. Available from: https://doi.org/10.1145/3010915.3010967.
Skvortsov, E.S., Xia, Y., Bowers, S. and Ludéascher, B., 2024. From Logic
Programming to Programming in Logica: A First-Course in Declarative Data
Science & Engineering. In: J. Arias, D. Azzolini, K. Basu, V. Dahl, M. Hecher,
F. Pacenza, Z.G. Saribatur and S.C. Varanasi, eds. Workshop Proceedings of the
40th International Conference on Logic Programming (ICLP-WS 2024) co-located with
the 40th International Conference on Logic Programming (ICLP 2024), Dallas, TX,
USA, October 12th and 13th, 2024. CEUR-WS.org, CEUR Workshop Proceedings,
vol. 3799. Available from: https://ceur-ws.org/Vol-3799/paper6PEG2.0.pdf.
Souza, S.M. and Bittencourt, R.A., 2019. Motivation and Engagement with PBL
in an Introductory Programming Course. IEEE Frontiers in Education Conference,
FIE 2019, Cincinnati, OH, USA, October 16-19, 2019. IEEE, pp.1-9. Available from:
https://doi.org/10.1109/FIE43999.2019.9028419.

Szeredi, P., 2004. Teaching Constraints through Logic Puzzles. In: K.R. Apt,
F. Fages, F. Rossi, P. Szeredi and J. Vancza, eds. Recent Advances in Con-
straints. Berlin, Heidelberg: Springer Berlin Heidelberg, Lecture Notes in Com-
puter Science, vol. 3010, pp.196-222. Available from: https://doi.org/10.1007/
978-3-540-24662-6_11.

Tiantong, M. and Teemuangsai, S., 2013. The Four Scaffolding Modules for
Collaborative Problem-Based Learning through the Computer Network on Moodle
LMS for the Computer Programming Course. International Education Studies,
6(5), pp.47-55. Available from: https://doi.org/10.5539/ies.vbn5p47.

Tran, V.D., Kato, H. and Hu, Z., 2020. A Counterexample-Guided Debugger for
Non-recursive Datalog. In: B.C.d.S. Oliveira, ed. Programming Languages and
Systems. Cham: Springer International Publishing, Lecture Notes in Computer
Science, vol. 12470, pp.323-342. Available from: https://doi.org/10.1007/
978-3-030-64437-6_17.

Villadsen, J. and Jacobsen, F.K., 2021. Using Isabelle in Two Courses on Logic
and Automated Reasoning. In: J.F. Ferreira, A. Mendes and C. Menghi, eds.
Formal Methods Teaching. Cham: Springer International Publishing, Lecture
Notes in Computer Science, vol. 13122 LNCS, pp.117-132. https://backend.
orbit.dtu.dk/ws/portalfiles/portal /266397070 /FMTea.pdf, Available from: https:
//doi.org/10.1007/978-3-030-91550-6_9.

Vosinakis, S., Anastassakis, G. and Koutsabasis, P., 2018. Teaching and
learning logic programming in virtual worlds using interactive microworld

424

https://doi.org/10.55056/cte.838
https://doi.org/10.1109/I2CT61223.2024.10543863
https://doi.org/10.1109/I2CT61223.2024.10543863
https://doi.org/10.1109/CLEI64178.2024.10700103
https://doi.org/10.1016/j.entcs.2011.02.011
https://doi.org/10.1007/s13218-018-0550-z
https://doi.org/10.1007/s13218-018-0550-z
https://doi.org/10.1145/3010915.3010967
https://ceur-ws.org/Vol-3799/paper6PEG2.0.pdf
https://doi.org/10.1109/FIE43999.2019.9028419
https://doi.org/10.1007/978-3-540-24662-6_11
https://doi.org/10.1007/978-3-540-24662-6_11
https://doi.org/10.5539/ies.v6n5p47
https://doi.org/10.1007/978-3-030-64437-6_17
https://doi.org/10.1007/978-3-030-64437-6_17
https://backend.orbit.dtu.dk/ws/portalfiles/portal/266397070/FMTea.pdf
https://backend.orbit.dtu.dk/ws/portalfiles/portal/266397070/FMTea.pdf
https://doi.org/10.1007/978-3-030-91550-6_9
https://doi.org/10.1007/978-3-030-91550-6_9

CTE Workshop Proceedings, 2025, Vol. 12, pp. 399-425 https://doi.org/10.55056/cte.838

[61]

[62]

[63]

[64]

[65]

[66]

representations. British Journal of Educational Technology, 49(1), pp.30-44.
https://www.researchgate.net/publication/309733522, Available from: https:
//doi.org/10.1111/bjet.12531.

Vosinakis, S., Koutsabasis, P. and Anastassakis, G., 2014. A Platform for Teaching
Logic Programming Using Virtual Worlds. IEEE 14th International Conference on
Advanced Learning Technologies, ICALT 2014, Athens, Greece, July 7-10, 2014.
IEEE Computer Society, pp.657-661. Available from: https://doi.org/10.1109/
ICALT.2014.193.

Wang, T., Liu, J.C. and Li, T., 2019. Design Variables for Self-Directed Learning
in MOOC Environment. Journal of Educational Technology Development and
Exchange, 12(1), pp.59-78. Available from: https://doi.org/10.18785/jetde.1201.
04.

Wick, M.R. and Stevenson, D.E., 2006. On using Scheme to introduce Prolog.
In: D. Baldwin, P.T. Tymann, S.M. Haller and I. Russell, eds. Proceedings of
the 37th SIGCSE Technical Symposium on Computer Science Education, SIGCSE
2006, Houston, Texas, USA, March 3-5, 2006. ACM, pp.41-45. Available from:
https://doi.org/10.1145/1121341.1121356.

Wu, C.P. and Lo, P.H., 2013. The design principles of the worked examples. Work-
shop Proceedings of the 21st International Conference on Computers in Education,
ICCE 2013. pp.192-195. Available from: https://library.apsce.net/index.php/
ICCE/article/view/2951.

Zhang, Y., Wang, J., Bolduc, F., Murray, W.G. and Staffen, W., 2019. A Prelim-
inary Report of Integrating Science and Computing Teaching Using Logic Pro-
gramming. The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
pp.-9737-9744. Available from: https://doi.org/10.1609/AAAI.V33101.33019737.
Zhu, M. and Bonk, C.J., 2022. Guidelines and strategies for fostering and
enhancing self-directed online learning. Open Learning: The Journal of Open,
Distance and e-Learning. Available from: https://doi.org/10.1080/02680513.
2022.2141105.

425

https://doi.org/10.55056/cte.838
https://www.researchgate.net/publication/309733522
https://doi.org/10.1111/bjet.12531
https://doi.org/10.1111/bjet.12531
https://doi.org/10.1109/ICALT.2014.193
https://doi.org/10.1109/ICALT.2014.193
https://doi.org/10.18785/jetde.1201.04
https://doi.org/10.18785/jetde.1201.04
https://doi.org/10.1145/1121341.1121356
https://library.apsce.net/index.php/ICCE/article/view/2951
https://library.apsce.net/index.php/ICCE/article/view/2951
https://doi.org/10.1609/AAAI.V33I01.33019737
https://doi.org/10.1080/02680513.2022.2141105
https://doi.org/10.1080/02680513.2022.2141105

	1 Introduction
	2 Background and context
	2.1 Definition and historical context
	2.2 Major logic programming paradigms
	2.3 Current position in computing curricula

	3 Teaching approaches by paradigm
	3.1 Prolog-based instruction
	3.1.1 Traditional approaches: syntax-first vs. problem-first
	3.1.2 Visual learning tools and execution tracers
	3.1.3 Problem-based learning methods
	3.1.4 Integration with AI curriculum

	3.2 Answer Set Programming pedagogy
	3.2.1 Modeling-first approaches
	3.2.2 Tools for ASP education
	3.2.3 Integration with knowledge representation courses

	3.3 Constraint Logic Programming
	3.3.1 Teaching approaches
	3.3.2 Application-based learning

	3.4 Datalog and deductive databases
	3.4.1 Current teaching practices
	3.4.2 Tools and platforms

	4 Cross-cutting pedagogical themes
	4.1 Visualization approaches
	4.1.1 Types of visualizations
	4.1.2 Evidence of effectiveness

	4.2 Problem-based learning
	4.2.1 Types of Problems and Domains
	4.2.2 Scaffolding approaches

	4.3 Integrated curriculum approaches
	4.3.1 Logic programming in different course contexts
	4.3.2 Cross-paradigm teaching

	4.4 Online and self-directed learning
	4.4.1 MOOCs and online resources
	4.4.2 Automated assessment tools

	5 Challenges and obstacles
	5.1 Cognitive challenges
	5.1.1 Declarative thinking barriers
	5.1.2 Execution model understanding

	5.2 Educational challenges
	5.2.1 Curriculum constraints
	5.2.2 Faculty expertise limitations

	5.3 Motivational challenges
	5.3.1 Perceived relevance issues
	5.3.2 Student engagement

	6 Emerging trends and innovations
	6.1 Integration with other paradigms
	6.2 Domain-specific applications
	6.3 New tools and platforms
	6.4 Pedagogical innovations

	7 Recommendations for practice
	8 Research gaps and future directions
	9 Conclusion

