Complex systems and physics education

Authors

DOI:

https://doi.org/10.55056/cte.103

Keywords:

synergetics, complex systems, non-equilibrium, self-organization, interdisciplinarity

Abstract

Synergetics as a scientific area of research is in demand by society. The context of synergetics makes it possible for scientists of different specializations to interact fruitfully in the language of systematic understanding and search for new solutions. The presented work raises the question of how the theory of self-organization can help in the reformation of the higher education system, why this is relevant, and what can lead to the training of both teachers and students within the framework of an interdisciplinary approach. In the future, we will highlight the most important characteristics of complex systems and the simplest and at the same time conceptually simplest methods for analyzing complexity. As part of the complex systems modeling course, which will first be presented to students of physics and mathematics, and then, possibly, to students of other specialties, we present signals of seismic activity, gravitational waves and magnetic activity, and demonstrate how we can identify critical or crash phenomena in such systems. This kind of analysis can serve as a good basis for the formation of professional skills and universal competencies.

Downloads

Download data is not yet available.
Abstract views: 688 / PDF views: 176

References

Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, P.A., Anderson, S.B., Anderson, W.G., Arai, K., Arain, M.A., Araya, M.C., Arceneaux, C.C., Areeda, J.S., Arnaud, N., Arun, K.G., Ascenzi, S., Ashton, G., Ast, M., Aston, S.M., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, P., Bader, M.K.M., Baker, P.T., Baldaccini, F., Ballardin, G., Ballmer, S.W., Barayoga, J.C., Barclay, S.E., Barish, B.C., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Barton, M.A., Bartos, I., Bassiri, R., Basti, A., Batch, J.C., Baune, C., Bavigadda, V., Bazzan, M., Behnke, B., Bejger, M., Belczynski, C., Bell, A.S., Bell, C.J., Berger, B.K., Bergman, J., Bergmann, G., Berry, C.P.L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I.A., Billingsley, G., Birch, J., Birney, R., Birnholtz, O., Biscans, S., Bisht, A., Bitossi, M., Biwer, C., Bizouard, M.A., Blackburn, J.K., Blair, C.D., Blair, D.G., Blair, R.M., Bloemen, S., Bock, O., Bodiya, T.P., Boer, M., Bogaert, G., Bogan, C., Bohe, A., Bojtos, P., Bond, C., Bondu, F., Bonnand, R., Boom, B.A., Bork, R., Boschi, V., Bose, S., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P.R., Braginsky, V.B., Branchesi, M., Brau, J.E., Briant, T., Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Brooks, A.F., Brown, D.A., Brown, D.D., Brown, N.M., Buchanan, C.C., Buikema, A., Bulik, T., Bulten, H.J., Buonanno, A., Buskulic, D., Buy, C., Byer, R.L., Cabero, M., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J.C., Callister, T., Calloni, E., Camp, J.B., Cannon, K.C., Cao, J., Capano, C.D., Capocasa, E., Carbognani, F., Caride, S., Diaz, J.C., Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C.B., Baiardi, L.C., Cerretani, G., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chamberlin, S.J., Chan, M., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, H.Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Cho, H.S., Cho, M., Chow, J.H., Christensen, N., Chu, Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J.A., Cleva, F., Coccia, E., Cohadon, P.F., Colla, A., Collette, C.G., Cominsky, L., Constancio, M., Conte, A., Conti, L., Cook, D., Corbitt, T.R., Cornish, N., Corsi, A., Cortese, S., Costa, C.A., Coughlin, M.W., Coughlin, S.B., Coulon, J.P., Countryman, S.T., Couvares, P., Cowan, E.E., Coward, D.M., Cowart, M.J., Coyne, D.C., Coyne, R., Craig, K., Creighton, J.D.E., Creighton, T.D., Cripe, J., Crowder, S.G., Cruise, A.M., Cumming, A., Cunningham, L., Cuoco, E., Canton, T.D., Danilishin, S.L., D’Antonio, S., Danzmann, K., Darman, N.S., Da Silva Costa, C.F., Dattilo, V., Dave, I., Daveloza, H.P., Davier, M., Davies, G.S., Daw, E.J., Day, R., De, S., DeBra, D., Debreczeni, G., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R.T., De Rosa, R., DeSalvo, R., Dhurandhar, S., Díaz, M.C., Di Fiore, L., Di Giovanni, M., Di Lieto, A., Di Pace, S., Di Palma, I., Di Virgilio, A., Dojcinoski, G., Dolique, V., Donovan, F., Dooley, K.L., Doravari, S., Douglas, R., Downes, T.P., Drago, M., Drever, R.W.P., Driggers, J.C., Du, Z., Ducrot, M., Dwyer, S.E., Edo, T.B., Edwards, M.C., Effler, A., Eggenstein, H.B., Ehrens, P., Eichholz, J., Eikenberry, S.S., Engels, W., Essick, R.C., Etzel, T., Evans, M., Evans, T.M., Everett, R., Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Fang, Q., Farinon, S., Farr, B., Farr, W.M., Favata, M., Fays, M., Fehrmann, H., Fejer, M.M., Feldbaum, D., Ferrante, I., Ferreira, E.C., Ferrini, F., Fidecaro, F., Finn, L.S., Fiori, I., Fiorucci, D., Fisher, R.P., Flaminio, R., Fletcher, M., Fong, H., Fournier, J.D., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, Z., Freise, A., Frey, R., Frey, V., Fricke, T.T., Fritschel, P., Frolov, V.V., Fulda, P., Fyffe, M., Gabbard, H.A.G., Gair, J.R., Gammaitoni, L., Gaonkar, S.G., Garufi, F., Gatto, A., Gaur, G., Gehrels, N., Gemme, G., Gendre, B., Genin, E., Gennai, A., George, J., Gergely, L., Germain, V., Ghosh, A., Ghosh, A., Ghosh, S., Giaime, J.A., Giardina, K.D., Giazotto, A., Gill, K., Glaefke, A., Gleason, J.R., Goetz, E., Goetz, R., Gondan, L., González, G., Castro, J.M.G., Gopakumar, A., Gordon, N.A., Gorodetsky, M.L., Gossan, S.E., Gosselin, M., Gouaty, R., Graef, C., Graff, P.B., Granata, M., Grant, A., Gras, S., Gray, C., Greco, G., Green, A.C., Greenhalgh, R.J.S., Groot, P., Grote, H., Grunewald, S., Guidi, G.M., Guo, X., Gupta, A., Gupta, M.K., Gushwa, K.E., Gustafson, E.K., Gustafson, R., Hacker, J.J., Hall, B.R., Hall, E.D., Hammond, G., Haney, M., Hanke, M.M., Hanks, J., Hanna, C., Hannam, M.D., Hanson, J., Hardwick, T., Harms, J., Harry, G.M., Harry, I.W., Hart, M.J., Hartman, M.T., Haster, C.J., Haughian, K., Healy, J., Heefner, J., Heidmann, A., Heintze, M.C., Heinzel, G., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I.S., Hennig, J., Heptonstall, A.W., Heurs, M., Hild, S., Hoak, D., Hodge, K.A., Hofman, D., Hollitt, S.E., Holt, K., Holz, D.E., Hopkins, P., Hosken, D.J., Hough, J., Houston, E.A., Howell, E.J., Hu, Y.M., Huang, S., Huerta, E.A., Huet, D., Hughey, B., Husa, S., Huttner, S.H., Huynh-Dinh, T., Idrisy, A., Indik, N., Ingram, D.R., Inta, R., Isa, H.N., Isac, J.M., Isi, M., Islas, G., Isogai, T., Iyer, B.R., Izumi, K., Jacobson, M.B., Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., Jawahar, S., Jiménez-Forteza, F., Johnson, W.W., Johnson-McDaniel, N.K., Jones, D.I., Jones, R., Jonker, R.J.G., Ju, L., Haris, K., Kalaghatgi, C.V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J.B., Karki, S., Kasprzack, M., Katsavounidis, E., Katzman, W., Kaufer, S., Kaur, T., Kawabe, K., Kawazoe, F., Kéfélian, F., Kehl, M.S., Keitel, D., Kelley, D.B., Kells, W., Kennedy, R., Keppel, D.G., Key, J.S., Khalaidovski, A., Khalili, F.Y., Khan, I., Khan, S., Khan, Z., Khazanov, E.A., Kijbunchoo, N., Kim, C., Kim, J., Kim, K., Kim, N.G., Kim, N., Kim, Y.M., King, E.J., King, P.J., Kinzel, D.L., Kissel, J.S., Kleybolte, L., Klimenko, S., Koehlenbeck, S.M., Kokeyama, K., Koley, S., Kondrashov, V., Kontos, A., Koranda, S., Korobko, M., Korth, W.Z., Kowalska, I., Kozak, D.B., Kringel, V., Krishnan, B., Królak, A., Krueger, C., Kuehn, G., Kumar, P., Kumar, R., Kuo, L., Kutynia, A., Kwee, P., Lackey, B.D., Landry, M., Lange, J., Lantz, B., Lasky, P.D., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lebigot, E.O., Lee, C.H., Lee, H.K., Lee, H.M., Lee, K., Lenon, A., Leonardi, M., Leong, J.R., Leroy, N., Letendre, N., Levin, Y., Levine, B.M., Li, T.G.F., Libson, A., Littenberg, T.B., Lockerbie, N.A., Logue, J., Lombardi, A.L., London, L.T., Lord, J.E., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J.D., Lousto, C.O., Lovelace, G., Lück, H., Lundgren, A.P., Luo, J., Lynch, R., Ma, Y., MacDonald, T., Machenschalk, B., MacInnis, M., Macleod, D.M., Sandoval, F. Magaña, Magee, R.M., Mageswaran, M., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandel, I., Mandic, V., Mangano, V., Mansell, G.L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A.S., Maros, E., Martelli, F., Martellini, L., Martin, I.W., Martin, R.M., Martynov, D.V., Marx, J.N., Mason, K., Masserot, A., Massinger, T.J., Masso-Reid, M., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D.E., McCormick, S., McGuire, S.C., McIntyre, G., McIver, J., McManus, D.J., McWilliams, S.T., Meacher, D., Meadors, G.D., Meidam, J., Melatos, A., Mendell, G., Mendoza-Gandara, D., Mercer, R.A., Merilh, E., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Meyers, P.M., Mezzani, F., Miao, H., Michel, C., Middleton, H., Mikhailov, E.E., Milano, L., Miller, J., Millhouse, M., Minenkov, Y., Ming, J., Mirshekari, S., Mishra, C., Mitra, S., Mitrofanov, V.P., Mitselmakher, G., Mittleman, R., Moggi, A., Mohan, M., Mohapatra, S.R.P., Montani, M., Moore, B.C., Moore, C.J., Moraru, D., Moreno, G., Morriss, S.R., Mossavi, K., Mours, B., Mow-Lowry, C.M., Mueller, C.L., Mueller, G., Muir, A.W., Mukherjee, A., Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Murphy, D.J., Murray, P.G., Mytidis, A., Nardecchia, I., Naticchioni, L., Nayak, R.K., Necula, V., Nedkova, K., Nelemans, G., Neri, M., Neunzert, A., Newton, G., Nguyen, T.T., Nielsen, A.B., Nissanke, S., Nitz, A., Nocera, F., Nolting, D., Normandin, M.E.N., Nuttall, L.K., Oberling, J., Ochsner, E., O’Dell, J., Oelker, E., Ogin, G.H., Oh, J.J., Oh, S.H., Ohme, F., Oliver, M., Oppermann, P., Oram, R.J., O’Reilly, B., O’Shaughnessy, R., Ott, C.D., Ottaway, D.J., Ottens, R.S., Overmier, H., Owen, B.J., Pai, A., Pai, S.A., Palamos, J.R., Palashov, O., Palomba, C., Pal-Singh, A., Pan, H., Pan, Y., Pankow, C., Pannarale, F., Pant, B.C., Paoletti, F., Paoli, A., Papa, M.A., Paris, H.R., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Z., Pearlstone, B.L., Pedraza, M., Pedurand, R., Pekowsky, L., Pele, A., Penn, S., Perreca, A., Pfeiffer, H.P., Phelps, M., Piccinni, O., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I.M., Pitkin, M., Poeld, J.H., Poggiani, R., Popolizio, P., Post, A., Powell, J., Prasad, J., Predoi, V., Premachandra, S.S., Prestegard, T., Price, L.R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G.A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quetschke, V., Quintero, E.A., Quitzow-James, R., Raab, F.J., Rabeling, D.S., Radkins, H., Raffai, P., Raja, S., Rakhmanov, M., Ramet, C.R., Rapagnani, P., Raymond, V., Razzano, M., Re, V., Read, J., Reed, C.M., Regimbau, T., Rei, L., Reid, S., Reitze, D.H., Rew, H., Reyes, S.D., Ricci, F., Riles, K., Robertson, N.A., Robie, R., Robinet, F., Rocchi, A., Rolland, L., Rollins, J.G., Roma, V.J., Romano, J.D., Romano, R., Romanov, G., Romie, J.H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadeghian, L., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sammut, L., Sampson, L.M., Sanchez, E.J., Sandberg, V., Sandeen, B., Sanders, G.H., Sanders, J.R., Sassolas, B., Sathyaprakash, B.S., Saulson, P.R., Sauter, O., Savage, R.L., Sawadsky, A., Schale, P., Schilling, R., Schmidt, J., Schmidt, P., Schnabel, R., Schofield, R.M.S., Schönbeck, A., Schreiber, E., Schuette, D., Schutz, B.F., Scott, J., Scott, S.M., Sellers, D., Sengupta, A.S., Sentenac, D., Sequino, V., Sergeev, A., Serna, G., Setyawati, Y., Sevigny, A., Shaddock, D.A., Shaffer, T., Shah, S., Shahriar, M.S., Shaltev, M., Shao, Z., Shapiro, B., Shawhan, P., Sheperd, A., Shoemaker, D.H., Shoemaker, D.M., Siellez, K., Siemens, X., Sigg, D., Silva, A.D., Simakov, D., Singer, A., Singer, L.P., Singh, A., Singh, R., Singhal, A., Sintes, A.M., Slagmolen, B.J.J., Smith, J.R., Smith, M.R., Smith, N.D., Smith, R.J.E., Son, E.J., Sorazu, B., Sorrentino, F., Souradeep, T., Srivastava, A.K., Staley, A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stephens, B.C., Stevenson, S.P., Stone, R., Strain, K.A., Straniero, N., Stratta, G., Strauss, N.A., Strigin, S., Sturani, R., Stuver, A.L., Summerscales, T.Z., Sun, L., Sutton, P.J., Swinkels, B.L., Szczepańczyk, M.J., Tacca, M., Talukder, D., Tanner, D.B., Tápai, M., Tarabrin, S.P., Taracchini, A., Taylor, R., Theeg, T., Thirugnanasambandam, M.P., Thomas, E.G., Thomas, M., Thomas, P., Thorne, K.A., Thorne, K.S., Thrane, E., Tiwari, S., Tiwari, V., Tokmakov, K.V., Tomlinson, C., Tonelli, M., Torres, C.V., Torrie, C.I., Töyrä, D., Travasso, F., Traylor, G., Trifirò, D., Tringali, M.C., Trozzo, L., Tse, M., Turconi, M., Tuyenbayev, D., Ugolini, D., Unnikrishnan, C.S., Urban, A.L., Usman, S.A., Vahlbruch, H., Vajente, G., Valdes, G., Vallisneri, M., Bakel, N. van, Beuzekom, M. van, Brand, J.F.J. van den, Van Den Broeck, C., Vander-Hyde, D.C., Schaaf, L. van der, Heijningen, J.V. van, Veggel, A.A. van, Vardaro, M., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P.J., Venkateswara, K., Verkindt, D., Vetrano, F., Viceré, A., Vinciguerra, S., Vine, D.J., Vinet, J.Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Voss, D., Vousden, W.D., Vyatchanin, S.P., Wade, A.R., Wade, L.E., Wade, M., Waldman, S.J., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang, M., Wang, X., Wang, Y., Ward, H., Ward, R.L., Warner, J., Was, M., Weaver, B., Wei, L.W., Weinert, M., Weinstein, A.J., Weiss, R., Welborn, T., Wen, L., Weßels, P., Westphal, T., Wette, K., Whelan, J.T., Whitcomb, S.E., White, D.J., Whiting, B.F., Wiesner, K., Wilkinson, C., Willems, P.A., Williams, L., Williams, R.D., Williamson, A.R., Willis, J.L., Willke, B., Wimmer, M.H., Winkelmann, L., Winkler, W., Wipf, C.C., Wiseman, A.G., Wittel, H., Woan, G., Worden, J., Wright, J.L., Wu, G., Yablon, J., Yakushin, I., Yam, W., Yamamoto, H., Yancey, C.C., Yap, M.J., Yu, H., Yvert, M., Zadrożny, A., Zangrando, L., Zanolin, M., Zendri, J.P., Zevin, M., Zhang, F., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhou, Z., Zhu, X.J., Zucker, M.E., Zuraw, S.E. and Zweizig, J., 2016. Observation of gravitational waves from a binary black hole merger. Phys. rev. lett., 116, p.061102.

Abrahamson, D. and Wilensky, U., 2005. Collaboration and equity in classroom activities using Statistics As Multi-Participant Learning-Environment Resource (S.A.M.P.L.E.R.). In: W. Stroup, U. Wilensky and C.D. Lee, eds. Patterns in group learning with next-generation network technology.

Abrahamson, D. and Wilensky, U., 2005. The stratified learning zone: Examining collaborative-learning design in demographically diverse mathematics classrooms. In: D.Y. White and E.H. Gutstein, eds. Equity and diversity studies in mathematics learning and instruction. conference: annual meeting of the american educational research associationannual meeting of the american educational research association.

Anderson, P.W., Arrow, K.J. and Pines, D., eds, 1988. The economy as an evolving complex system. 1st ed. Addison-Wesley.

Andrushchenko, V. and Svyrydenko, D., 2016. Akademichna mobilnist v ukrayinskomu prostori vyshchoyi shkoly: realiyi, vyklyky ta perspektyvy rozvytku. Vyshcha osvita ukrayiny, 2, pp.5–11.

Arthur, W.B., Durlauf, S.N. and Lane, D.A., eds, 1997. The economy as an evolving complex system II. 1st ed. Addison-Wesley.

Ashkenazy, Y., Baker, D.R., Gildor, H. and Havlin, S., 2003. Nonlinearity and multifractality of climate change in the past 420,000 years. Geophysical research letters, 30(22), p.4. Available from: https://doi.org/10.1029/2003GL018099. DOI: https://doi.org/10.1029/2003GL018099

Auerbach, F., 1913. Das gesetz der bevölkerungskonzentration, petermanns. Geographische mitteilungen, 59, pp.74–76.

Axelrod, R., 1997. The complexity of cooperation: Agent-based models of competition and collaboration, Princeton Studies in Complexity. Princeton University Press. DOI: https://doi.org/10.1515/9781400822300

Baiesi, M. and Paczuski, M., 2004. Scale-free networks of earthquakes and aftershocks. Physical review e, 69(6). Available from: https://doi.org/10.1103/physreve.69.066106. DOI: https://doi.org/10.1103/PhysRevE.69.066106

Bak, P., Tang, C. and Wiesenfeld, K., 1987. Self-organized criticality: An explanation of the 1/f noise. Phys. rev. lett., 59, pp.381–384. Available from: https://doi.org/10.1103/PhysRevLett.59.381. DOI: https://doi.org/10.1103/PhysRevLett.59.381

Balmer, M., Nagel, K. and Raney, B., 2004. Large-scale multi-agent simulations for transportation applications. Journal of intelligent transportation systems, 8(4), pp.205–221. Available from: https://doi.org/10.1080/15472450490523892. DOI: https://doi.org/10.1080/15472450490523892

Banerjee, A., Goswami, B., Hirata, Y., Eroglu, D., Merz, B., Kurths, J. and Marwan, N., 2021. Recurrence analysis of extreme event-like data. Nonlinear processes in geophysics, 28(2), pp.213–229. Available from: https://doi.org/10.5194/npg-28-213-2021. DOI: https://doi.org/10.5194/npg-28-213-2021

Bielinskyi, A., Hushko, S., Matviychuk, A., Serdyuk, O., Semerikov, S. and Soloviev, V., 2021. The lack of reversibility during financial crisis and its identification. Shs web of conferences, 107, p.03002. Available from: https://doi.org/10.1051/shsconf/202110703002. DOI: https://doi.org/10.1051/shsconf/202110703002

Bielinskyi, A., Khvostina, I., Mamanazarov, A., Matviychuk, A., Semerikov, S., Serdyuk, O., Solovieva, V. and Soloviev, V.N., 2021. Predictors of oil shocks. econophysical approach in environmental science. IOP conference series: Earth and environmental science, 628, p.012019. Available from: https://doi.org/10.1088/1755-1315/628/1/012019. DOI: https://doi.org/10.1088/1755-1315/628/1/012019

Bielinskyi, A., Semerikov, S., Solovieva, V. and Soloviev, V., 2019. Levy’s stable distribution for stock crash detecting. Shs web of conferences, 65, p.06006. Available from: https://doi.org/10.1051/shsconf/20196506006. DOI: https://doi.org/10.1051/shsconf/20196506006

Bielinskyi, A., Serdyuk, O., Semerikov, S. and Soloviev, V., 2021. Econophysics of cryptocurrency crashes: an overview. Shs web of conferences, 107, p.03001. Available from: https://doi.org/10.1051/shsconf/202110703001. DOI: https://doi.org/10.1051/shsconf/202110703001

Bladford, R.R., 1993. Discrimination of earthquakes and explosions. (Report AFTAC-TR-93-044 HQ). Air Force Technical Applications Center, Patrick Air Force Base FL 32925-6001. Available from: https://apps.dtic.mil/sti/pdfs/ADA267638.pdf.

Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z. and Zanin, M., 2014. The structure and dynamics of multilayer networks. Physics reports, 544(1), pp.1–122. The structure and dynamics of multilayer networks. Available from: https://doi.org/10.1016/j.physrep.2014.07.001. DOI: https://doi.org/10.1016/j.physrep.2014.07.001

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.U., 2006. Complex networks: Structure and dynamics. Physics reports, 424(4), pp.175–308. Available from: https://doi.org/10.1016/j.physrep.2005.10.009. DOI: https://doi.org/10.1016/j.physrep.2005.10.009

Boltzmann, L., 1970. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Vieweg+Teubner Verlag, vol. 67, pp.115–225. Available from: https://doi.org/10.1007/978-3-322-84986-1_3. DOI: https://doi.org/10.1007/978-3-322-84986-1_3

Brzeziński, M., 2014. Power laws in citation distributions: Evidence from Scopus. (Working papers 2014-05). Faculty of Economic Sciences, University of Warsaw. Available from: https://ideas.repec.org/p/war/wpaper/2014-05.html. DOI: https://doi.org/10.2139/ssrn.2397685

Chen, Y., Manchester, W.B., Hero, A.O., Toth, G., DuFumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z. and Gombosi, T.I., 2019. Identifying solar flare precursors using time series of SDO/HMI images and SHARP parameters. Space weather, 17(10), p.1404–1426. Available from: https://doi.org/10.1029/2019sw002214. DOI: https://doi.org/10.1029/2019SW002214

Clausius, R., 1870. XVI. On a mechanical theorem applicable to heat. The london, edinburgh, and dublin philosophical magazine and journal of science, 40(265), pp.122–127. Available from: https://doi.org/10.1080/14786447008640370. DOI: https://doi.org/10.1080/14786447008640370

Corominas-Murtra, B., Hanel, R. and Thurner, S., 2015. Understanding scaling through history-dependent processes with collapsing sample space. Proceedings of the national academy of sciences, 112(17), pp.5348–5353. Available from: https://doi.org/10.1073/pnas.1420946112. DOI: https://doi.org/10.1073/pnas.1420946112

Costa, M., Goldberger, A.L. and Peng, C.K., 2005. Broken asymmetry of the human heartbeat: Loss of time irreversibility in aging and disease. Phys. rev. lett., 95, p.198102. Available from: https://doi.org/10.1103/PhysRevLett.95.198102. DOI: https://doi.org/10.1103/PhysRevLett.95.198102

Council, N.R., 2000. How people learn: Brain, mind, experience, and school: Expanded edition. Washington, DC: The National Academies Press. Available from: https://doi.org/10.17226/9853. DOI: https://doi.org/10.17226/9853

Davis, B. and Sumara, D., 2006. Complexity and education: Inquiries into learning, teaching, and research. Journal of contemporary issues in education, 1(1), pp.54–55. DOI: https://doi.org/10.20355/C5H593

Davis-Seaver, J., Leflore, D. and Smith, T., 2000. Promoting critical thinking at the university level. National forum of teacher educational journal, 10E(3), pp.1–11. Available from: https://tinyurl.com/432r8czp.

Daw, C.S., Finney, C.E.A. and Kennel, M.B., 2000. Symbolic approach for measuring temporal “irreversibility”. Phys. rev. e, 62, pp.1912–1921. Available from: https://doi.org/10.1103/PhysRevE.62.1912. DOI: https://doi.org/10.1103/PhysRevE.62.1912

Derbentsev, V., Semerikov, S., Serdyuk, O., Solovieva, V. and Soloviev, V., 2020. Recurrence based entropies for sustainability indices. E3s web of conferences, 166, p.13031. Available from: https://doi.org/10.1051/e3sconf/202016613031. DOI: https://doi.org/10.1051/e3sconf/202016613031

The disturbance storm time index, 2021. Available from: https://tinyurl.com/2p9arc48.

Domp, C., 1996. The critical point: A historical introduction to the modern theory of critical phenomena. 1st ed. CRC Press. Available from: https://doi.org/10.1201/9781482295269. DOI: https://doi.org/10.1201/9781482295269

Donges, J.F., Donner, R.V. and Kurths, J., 2013. Testing time series irreversibility using complex network methods. EPL (europhysics letters), 102(1), p.10004. Available from: https://doi.org/10.1209/0295-5075/102/10004. DOI: https://doi.org/10.1209/0295-5075/102/10004

Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R. and Kurths, J., 2011. Recurrence-based time series analysis by means of complex network methods. International journal of bifurcation and chaos, 21(04), pp.1019–1046. Available from: https://doi.org/10.1142/S0218127411029021. DOI: https://doi.org/10.1142/S0218127411029021

Eckmann, J.P., Kamphorst, S.O. and Ruelle, D., 1987. Recurrence plots of dynamical systems. Europhysics letters (EPL), 4(9), pp.973–977. Available from: https://doi.org/10.1209/0295-5075/4/9/004. DOI: https://doi.org/10.1209/0295-5075/4/9/004

Eghdami, I., Panahi, H. and Movahed, S.M.S., 2018. Multifractal analysis of pulsar timing residuals: Assessment of gravitational wave detection. The astrophysical journal, 864(2), p.162. Available from: https://doi.org/10.3847/1538-4357/aad7b9. DOI: https://doi.org/10.3847/1538-4357/aad7b9

Epstein, J.M. and Axtell, R., 1996. Growing artificial societies: Social science from the bottom up, vol. 1. 1st ed. The MIT Press. Available from: https://tinyurl.com/9v973cp6.

Epstein, J.M. and Axtell, R., 1996. Growing artificial societies: Social science from the bottom up. MIT. DOI: https://doi.org/10.7551/mitpress/3374.001.0001

Fan, Z., Chen, Q., Sun, G., Mastorakis, N. and Zhuang, X., 2018. Nonlinear analysis of gravitational wave signals based on recurrence quantification analysis. Matec web of conferences, 210, p.05011. Available from: https://doi.org/10.1051/matecconf/201821005011. DOI: https://doi.org/10.1051/matecconf/201821005011

Flanagan, R. and Lacasa, L., 2016. Irreversibility of financial time series: A graph-theoretical approach. Physics letters a, 380(20), pp.1689–1697. Available from: https://doi.org/10.1016/j.physleta.2016.03.011. DOI: https://doi.org/10.1016/j.physleta.2016.03.011

Freitas, D.B. de, Nepomuceno, M.M.F. and Medeiros, J.R.D., 2019. Multifractal signatures of gravitational waves detected by ligo. 1912.12967.

Fulcher, B.D., Little, M.A. and Jones, N.S., 2013. Highly comparative time-series analysis: the empirical structure of time series and their methods. Journal of the royal society interface, 10(83), p.20130048. Available from: https://doi.org/10.1098/rsif.2013.0048. DOI: https://doi.org/10.1098/rsif.2013.0048

Haken, H., 1977. Synergetics. Physics bulletin, 28(9), p.412. DOI: https://doi.org/10.1088/0031-9112/28/9/027

Haken, H., 1982. Synergetics: Formation of ordered structures out of chaos. Leonardo, 15(1), pp.66–67. Available from: http://www.jstor.org/stable/1574350. DOI: https://doi.org/10.2307/1574350

Haken, H., 1984. Can synergetics be of use to management theory? Self-organization and management of social systems. Springer, pp.33–41. DOI: https://doi.org/10.1007/978-3-642-69762-3_3

Haken, H., 2004. Synergetics: Introduction and advanced topics. 1st ed. Springer, Berlin, Heidelberg. Available from: https://doi.org/10.1007/978-3-662-10184-1. DOI: https://doi.org/10.1007/978-3-662-10184-1

Haken, H. and Schiepek, G., 2006. Synergetik in der psychologie: Selbstorganisation verstehen und gestalten. Hogrefe Göttingen.

Helbing, D. and Nagel, K., 2004. The physics of traffic and regional development. Contemporary physics, 45(5), pp.405–426. Available from: https://doi.org/10.1080/00107510410001715944. DOI: https://doi.org/10.1080/00107510410001715944

Jackson, E.A., 1995. The second metamorphosis of science: A second view. (Sfi working papers 96-05-059). Santa Fe Institute. Available from: https://tinyurl.com/48c945k4.

Jackson, S., Krajcik, J. and Soloway, E., 2000. Model-it: A design retrospective. In: M.J. Jacobson and R.B. Kozma, eds. Innovations in science and mathematics education: Advanced designs for technologies of learning. Lawrence Erlbaum Associates, Inc, pp.77–115.

Jacobson, M.J. and Wilensky, U., 2006. Complex systems in education: Scientific and educational importance and implications for the learning sciences. Journal of the learning sciences, 15(1), pp.11–34. Available from: https://doi.org/10.1207/s15327809jls1501_4. DOI: https://doi.org/10.1207/s15327809jls1501_4

Javaherian, M. and Mollaei, S., 2021. Multiscale Entropy Analysis of Gravitational Waves. Adv. high energy phys., 2021, p.6643546. Available from: https://doi.org/10.1155/2021/6643546. DOI: https://doi.org/10.1155/2021/6643546

Jiang, C., Shang, P. and Shi, W., 2016. Multiscale multifractal time irreversibility analysis of stock markets. Physica a: Statistical mechanics and its applications, 462, pp.492–507. Available from: https://doi.org/10.1016/j.physa.2016.06.092. DOI: https://doi.org/10.1016/j.physa.2016.06.092

Juan, B.A.S. and Guzmán-Vargas, L., 2013. Earthquake magnitude time series: scaling behavior of visibility networks. The european physical journal b: Condensed matter and complex systems, 86(11), pp.1–10. Available from: https://doi.org/10.1140/epjb/e2013-40762-2. DOI: https://doi.org/10.1140/epjb/e2013-40762-2

Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. and Stanley, H., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Physica a: Statistical mechanics and its applications, 316(1), pp.87–114. Available from: https://doi.org/10.1016/S0378-4371(02)01383-3. DOI: https://doi.org/10.1016/S0378-4371(02)01383-3

Karakatsanis, L.P., Pavlos, G.P. and Xenakis, M.N., 2013. Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics. Physica a: Statistical mechanics and its applications, 392(18), pp.3920–3944. Available from: https://doi.org/10.1016/j.physa.2013.05.010. DOI: https://doi.org/10.1016/j.physa.2013.05.010

Karlov, N.V., 1998. Preobrazovaniye obrazovaniya. Voprosy filosofii, 11, pp.3–20.

Kennel, M.B., 2004. Testing time symmetry in time series using data compression dictionaries. Phys. rev. e, 69, p.056208. Available from: https://doi.org/10.1103/PhysRevE.69.056208. DOI: https://doi.org/10.1103/PhysRevE.69.056208

Knyazeva, E.N. and Kurdyumov, S.P., 1994. Zakony evolyutsii i samoorganizatsii slozhnykh system. Moscow: Nauka.

Kochubei, N., 2006. Neliniine myslennia v osviti. In: I. Predborska, ed. Filosofski abrysy suchasnoi osvity. Universytetska kniha, vol. 11, pp.29–41.

Kremen, V., 2013. Pedahohichna synerhetyka: poniatiino-katehorialnyi syntez. Teoriia i praktyka upravlinnia sotsialnymy systemamy, 3, pp.3–19.

Kremen, V.H. and Illyin, V.V., 2012. Synerhetyka v osviti: kontekst lyudynotsentryzmu.

Kundu, S., Opris, A., Yukutake, Y. and Hatano, T., 2021. Extracting correlations in earthquake time series using visibility graph analysis. Frontiers in physics, 9, p.179. Available from: https://doi.org/10.3389/fphy.2021.656310. DOI: https://doi.org/10.3389/fphy.2021.656310

Lacasa, L., Nuñez, A., Roldán, E., Parrondo, J.M.R. and Luque, B., 2012. Time series irreversibility: a visibility graph approach. Eur. phys. j. b, 85(6), p.217. Available from: https://doi.org/10.1140/epjb/e2012-20809-8. DOI: https://doi.org/10.1140/epjb/e2012-20809-8

Langton, C., ed., 1989. Artificial life. Addison-Wesley.

Langton, C., ed., 1995. Artificial life: Overview. MIT. DOI: https://doi.org/10.7551/mitpress/1427.001.0001

Lawrance, A.J., 1991. Directionality and reversibility in time series. International statistical review / revue internationale de statistique, 59(1), pp.67–79. Available from: http://www.jstor.org/stable/1403575. DOI: https://doi.org/10.2307/1403575

Lin, M., Zhao, G. and Wang, G., 2015. Recurrence quantification analysis for detecting dynamical changes in earthquake magnitude time series. International journal of modern physics c, 26(07), p.1550077. Available from: https://doi.org/10.1142/S0129183115500771. DOI: https://doi.org/10.1142/S0129183115500771

Litvinenko, Y.E., 2019. A maximum entropy argument for the slopes of power-law particle spectra in solar flares. The astrophysical journal, 880(1), p.20. Available from: https://doi.org/10.3847/1538-4357/ab2760. DOI: https://doi.org/10.3847/1538-4357/ab2760

Liu, H., Liu, C., Wang, J.T.L. and Wang, H., 2019. Predicting solar flares using a long short-term memory network. The astrophysical journal, 877(2), p.121. Available from: https://doi.org/10.3847/1538-4357/ab1b3c. DOI: https://doi.org/10.3847/1538-4357/ab1b3c

Mandelbrot, B.B., 1953. An informational theory of the statistical structure of languages. Communication theory, pp.486–502.

Marwan, N. and Kurths, J., 2002. Nonlinear analysis of bivariate data with cross recurrence plots. Physics letters a, 302(5-6), p.299–307. Available from: https://doi.org/10.1016/s0375-9601(02)01170-2. DOI: https://doi.org/10.1016/S0375-9601(02)01170-2

National Research Council, 2000. Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press. Available from: https://doi.org/10.17226/9596. DOI: https://doi.org/10.17226/9596

Newman, M.E.J., 2003. The structure and function of complex networks. Siam review, 45(2), p.167–256. Available from: https://doi.org/10.1137/s003614450342480. DOI: https://doi.org/10.1137/S003614450342480

Nicolis, G. and Prigogine, I., 1989. Exploring complexity: an introduction. W.H. Freeman New York.

Nobel Foundation, 2021. Press release: The nobel prize in physics 2021. Available from: https://www.nobelprize.org/prizes/physics/2021/press-release/.

Noth, M., Borning, A. and Waddell, P., 2003. An extensible, modular architecture for simulating urban development, transportation, and environmental impacts. Computers, environment and urban systems, 27(2), pp.181–203. Available from: https://doi.org/10.1016/S0198-9715(01)00030-8. DOI: https://doi.org/10.1016/S0198-9715(01)00030-8

Pagels, H.R., 1988. The dreams of reason: The computer and the rise of the sciences of complexity. Simon & Schuster.

Panfilov, O.Y. and Romanova, I.V., 2019. Synerhetychnyy pidkhid v osmyslenni osvity. Bulletin of the yaroslav the wise national university, 3(42), p.71–80. Available from: https://doi.org/10.21564/2075-7190.42.170335. DOI: https://doi.org/10.21564/2075-7190.42.170335

Pareto, V., 1896. Cours d’Économie politique, vol. 1.

Poincaré, H., 1890. Sur le problème des trois corps et les équations de la dynamique. Acta math, 13, pp.1–270. DOI: https://doi.org/10.1007/BF02392507

Posadas, A., Morales, J. and Posadas-Garzon, A., 2021. Earthquakes and entropy: Characterization of occurrence of earthquakes in Southern Spain and Alboran Sea. Chaos: An interdisciplinary journal of nonlinear science, 31(4), p.043124. Available from: https://doi.org/10.1063/5.0031844. DOI: https://doi.org/10.1063/5.0031844

Prigogine, I., 1980. From being to becoming time and complexity in the physical sciences. W.H. Freeman.

Prigogine, I., 1989. The philosophy of instability. Futures, 21(4), pp.396–400. Available from: https://doi.org/10.1016/S0016-3287(89)80009-6. DOI: https://doi.org/10.1016/S0016-3287(89)80009-6

Prigogine, I. and Stengers, I., 1984. Order out of chaos man’s new dialogue with nature. Bantam Books.

Prigogine, I. and Stengers, I., 1997. The end of certainty. Free Press.

Rubanets, O., 2016. Kohnityvnyy aspekt metodolohichnoho onovlennya vyshchoyi shkoly. Vyshcha osvita ukrayiny, 3, pp.24–29.

Saravia, L.A., Doyle, S.R. and Bond-Lamberty, B., 2018. Power laws and critical fragmentation in global forests. Scientific reports, 8(1), p.17766. Available from: https://doi.org/10.1038/s41598-018-36120-w. DOI: https://doi.org/10.1038/s41598-018-36120-w

Shannon, C.E., 1948. A mathematical theory of communication. Bell system technical journal, 27(3), pp.379–423. Available from: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shumway, R.H. and Stoffer, D.S., 2016. Time series analysis and its applications. with R examples, Springer Texts in Statistics. 4th ed. Springer. DOI: https://doi.org/10.1007/978-3-319-52452-8

Soloviev, V. and Belinskij, A., 2018. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. Ceur workshop proceedings, 2104, pp.116–127. DOI: https://doi.org/10.31812/123456789/2851

Soloviev, V.N. and Belinskiy, A., 2019. Complex systems theory and crashes of cryptocurrency market. In: V. Ermolayev, M.C. Suárez-Figueroa, V. Yakovyna, H.C. Mayr, M. Nikitchenko and A. Spivakovsky, eds. Information and communication technologies in education, research, and industrial applications. Cham: Springer International Publishing, pp.276–297. Available from: https://doi.org/10.1007/978-3-030-13929-2_14. DOI: https://doi.org/10.1007/978-3-030-13929-2_14

Sornette, D., 2006. Critical phenomena in natural sciences. chaos, fractals, selforganization and disorder: Concepts and tools, Springer Series in Synergetics. 2nd ed. Springer-Verlag. Available from: https://doi.org/10.1007/3-540-33182-4. DOI: https://doi.org/10.1007/3-540-33182-4

Sreenivasan, K.R. and Meneveau, C., 1986. The fractal facets of turbulence. Journal of fluid mechanics, 173, p.357–386. Available from: https://doi.org/10.1017/S0022112086001209. DOI: https://doi.org/10.1017/S0022112086001209

Stanley, H.E. and Meakin, P., 1988. Multifractal phenomena in physics and chemistry. Nature, 335, pp.405–409. Available from: https://doi.org/10.1038/335405a0. DOI: https://doi.org/10.1038/335405a0

Stone, L., Landan, G. and May, R.M., 1996. Detecting TimeArrow: a method for identifying nonlinearity and deterministic chaos in time-series data. Proceedings of the royal society of london. series b: Biological sciences, 263(1376), pp.1509–1513. DOI: https://doi.org/10.1098/rspb.1996.0220

Taranenko, T.M., 2014. Synerhetychnyi pidkhid v orhanizatsii navchalno-vykhovnoho protsessu. Tavriiskyi visnyk osvity, 1(45), pp.10–15.

Thurner, S., ed., 2017. 43 visions for complexity, Exploring Complexity, vol. 3. Singapore: World Scientific. Available from: http://pure.iiasa.ac.at/id/eprint/14000/. DOI: https://doi.org/10.1142/10360

Vandyshev, V.M., ed., 2000. Problemy koevolyutsiyi, Philosophical Sciences. Sums’kyy Derzhavnyy Pedahohichnyy Universytet Imeni A. S. Makarenka.

Webber, C.L. and Zbilut, J.P., 1994. Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of applied physiology, 76(2), pp.965–973. Available from: https://doi.org/10.1152/jappl.1994.76.2.965. DOI: https://doi.org/10.1152/jappl.1994.76.2.965

West, J.J. and Dowlatabadi, H., 1998. On assessing the economic impacts of sea-level rise on developed coasts. In: T.E. Downing, A.A. Olsthoorn and R.S.J. Tol, eds. Climate, change and risk. 1st ed. p.16.

Wheatley, M.J., 2006. Leadership and the new science: Discovering order in a chaotic world. 3rd ed. Berrett-Koehler Publishers.

Wilensky, U. and Jacobson, M., 2014. Complex systems and the learning sciences. The cambridge handbook of the learning sciences, second edition. Cambridge University Press, pp.319–338. Available from: https://doi.org/10.1017/CBO9781139519526.020. DOI: https://doi.org/10.1017/CBO9781139519526.020

Zanin, M., Rodríguez-González, A., Menasalvas Ruiz, E. and Papo, D., 2018. Assessing time series reversibility through permutation patterns. Entropy, 20(9). DOI: https://doi.org/10.3390/e20090665

Zbilut, J.P. and Webber, C.L., 1992. Embeddings and delays as derived from quantification of recurrence plots. Physics letters a, 171(3), pp.199–203. DOI: https://doi.org/10.1016/0375-9601(92)90426-M

Zipf, G.K., 1950. Human behavior and the principle of least effort. The economic journal, 60(240), pp.808–810. Available from: http://www.jstor.org/stable/2226729. DOI: https://doi.org/10.2307/2226729

Downloads

Published

2022-03-21

Issue

Section

Digital Transformation of Education

How to Cite

Bielinskyi, A.O., Kiv, A.E., Prikhozha, Y.O., Slusarenko, M.A. and Soloviev, V.N., 2022. Complex systems and physics education. CTE Workshop Proceedings [Online], 9, pp.56–80. Available from: https://doi.org/10.55056/cte.103 [Accessed 12 November 2024].
Received 2021-06-29
Accepted 2021-12-17
Published 2022-03-21

Similar Articles

11-20 of 155

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>