Empirical comparison of clustering and classification methods for detecting Internet addiction

Authors

DOI:

https://doi.org/10.55056/cte.664

Keywords:

machine learning, clustering, classification, Internet addiction, WEKA

Abstract

Machine learning methods for clustering and classification are widely used in various domains. However, their performance and applicability may depend on the characteristics of the data and the problem. In this paper, we present an empirical comparison of several clustering and classification methods using WEKA, a free software for machine learning. We apply these methods to the data collected from surveys of students from different majors, aiming to detect the signs of Internet addiction (IA), a behavioural disorder caused by excessive Internet use. We use Expectation Maximization, Farthest First and K-Means for clustering, and AdaBoost, Bagging, Random Forest and Vote for classification. We evaluate the methods based on their accuracy, complexity and interpretability. We also describe the models developed by these methods and discuss their implications for identifying the respondents with IA symptoms and risk groups. The results show that these methods can be effectively used for clustering and classifying IA-related data. However, they have different strengths and limitations when choosing the best method for a specific task.

Downloads

Download data is not yet available.
Abstract views: 377 / PDF views: 85

References

Abbott, D.A., Cramer, S.L. and Sherrets, S.D., 1995. Pathological Gambling and the Family: Practice Implications. Families in Society, 76(4), pp.213–219. Available from: https://doi.org/10.1177/104438949507600402. DOI: https://doi.org/10.1177/104438949507600402

Anokhin, P.K., 1968. Cybernétique, neurophysiologie et psychologie. Social Science Information, 7(1), pp.169–197. Available from: https://doi.org/10.1177/053901846800700115. DOI: https://doi.org/10.1177/053901846800700115

Antoniuk, D.S., Vakaliuk, T.A., Didkivskyi, V.V., Vizghalov, O., Oliinyk, O.V. and Yanchuk, V.M., 2021. Using a business simulator with elements of machine learning to develop personal finance management skills. In: V. Ermolayev, A.E. Kiv, S.O. Semerikov, V.N. Soloviev and A.M. Striuk, eds. Proceedings of the 9th Illia O. Teplytskyi Workshop on Computer Simulation in Education (CoSinE 2021) co-located with 17th International Conference on ICT in Education, Research, and Industrial Applications: Integration, Harmonization, and Knowledge Transfer (ICTERI 2021), Kherson, Ukraine, October 1, 2021. CEUR-WS.org, CEUR Workshop Proceedings, vol. 3083, pp.59–70. Available from: https://ceur-ws.org/Vol-3083/paper131.pdf.

Antoniuk, D.S., Vakaliuk, T.A., Didkivskyi, V.V. and Vizghalov, O.Y., 2022. Development of a simulator to determine personal financial strategies using machine learning. CEUR Workshop Proceedings, 3077, pp.12–26.

Balatskiy, E.V., 2008. Vitalnyye resursy i kontury soznaniya [Vital resources and circuits of consciousness]. Vestnik Rossiyskoy akademii nauk, 78(6), pp.531–537.

Breiman, L., 1996. Bagging predictors. Machine learning, 24(2), pp.123–140. DOI: https://doi.org/10.1007/BF00058655

Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5–32. DOI: https://doi.org/10.1023/A:1010933404324

Brito Da Silva, L.E., Melton, N.M. and Wunsch, D.C., 2020. Incremental Cluster Validity Indices for Online Learning of Hard Partitions: Extensions and Comparative Study. IEEE Access, 8, pp.22025–22047. Available from: https://doi.org/10.1109/ACCESS.2020.2969849. DOI: https://doi.org/10.1109/ACCESS.2020.2969849

Dasgupta, S. and Long, P.M., 2005. Performance guarantees for hierarchical clustering. Journal of Computer and System Sciences, 70(4), pp.555–569. Available from: https://doi.org/10.1016/j.jcss.2004.10.006. DOI: https://doi.org/10.1016/j.jcss.2004.10.006

Derbentsev, V., Matviychuk, A. and Soloviev, V.N., 2020. Forecasting of Cryptocurrency Prices Using Machine Learning. In: L. Pichl, C. Eom, E. Scalas and T. Kaizoji, eds. Advanced Studies of Financial Technologies and Cryptocurrency Markets. Singapore: Springer Singapore, pp.211–231. Available from: https://doi.org/10.1007/978-981-15-4498-9_12. DOI: https://doi.org/10.1007/978-981-15-4498-9_12

Derhach, M., 2016. Cyber-Addiction of Students Majoring in Computer Science. Science and Education, (7), pp.92–98. Available from: https://doi.org/10.24195/2414-4665-2016-7-16. DOI: https://doi.org/10.24195/2414-4665-2016-7-16

Di, Z., Gong, X., Shi, J., Ahmed, H.O.A. and Nandi, A.K., 2019. Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine. Addictive Behaviors Reports, 10, p.100200. Available from: https://doi.org/10.1016/j.abrep.2019.100200. DOI: https://doi.org/10.1016/j.abrep.2019.100200

Fadieieva, L.O., 2021. Enhancing adaptive learning with Moodle’s machine learning. Educational Dimension, 5, p.1–7. Available from: https://doi.org/10.31812/ed.625. DOI: https://doi.org/10.31812/ed.625

Frankl, V.E., 1985. Man’s search for meaning. Simon and Schuster.

Freund, Y. and Schapire, R.E., 1996. Experiments with a New Boosting Algorithm. Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., ICML’96, p.148–156.

Hsieh, W.H., Shih, D.H., Shih, P.Y. and Lin, S.B., 2019. An ensemble classifier with case-based reasoning system for identifying internet addiction. International journal of environmental research and public health, 16(7), p.1233. Available from: https://doi.org/10.3390/ijerph16071233. DOI: https://doi.org/10.3390/ijerph16071233

Huizinga, J., 2016. Homo Ludens: A Study of the Play-Element in Culture. Angelico press.

Hussain, R.G., Ghazanfar, M.A., Azam, M.A., Naeem, U. and Ur Rehman, S., 2019. A performance comparison of machine learning classification approaches for robust activity of daily living recognition. Artificial Intelligence Review, 52(1), pp.357–379. Available from: https://doi.org/10.1007/s10462-018-9623-5. DOI: https://doi.org/10.1007/s10462-018-9623-5

Ji, H.M., Chen, L.Y. and Hsiao, T.C., 2019. Real-time detection of internet addiction using reinforcement learning system. Proceedings of the Genetic and Evolutionary Computation Conference Companion. pp.1280–1288. Available from: https://doi.org/10.1145/3319619.3326882. DOI: https://doi.org/10.1145/3319619.3326882

Keng, B., 2016. The Expectation-Maximization Algorithm. Available from: http://bjlkeng.github.io/posts/the-expectation-maximization-algorithm.

Kittler, J., Hatef, M., Duin, R.P. and Matas, J., 1998. On combining classifiers. IEEE transactions on pattern analysis and machine intelligence, 20(3), pp.226–239. DOI: https://doi.org/10.1109/34.667881

Kiv, A., Hryhoruk, P., Khvostina, I., Solovieva, V., Soloviev, V.N. and Semerikov, S., 2020. Machine learning of emerging markets in pandemic times. In: A. Kiv, ed. Proceedings of the Selected Papers of the Special Edition of International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2020), Odessa, Ukraine, July 13-18, 2020. CEUR-WS.org, CEUR Workshop Proceedings, vol. 2713, pp.1–20. Available from: https://ceur-ws.org/Vol-2713/paper00.pdf.

Kiv, A., Semerikov, S., Soloviev, V.N., Kibalnyk, L., Danylchuk, H. and Matviychuk, A., 2019. Experimental Economics and Machine Learning for Prediction of Emergent Economy Dynamics. In: A. Kiv, S. Semerikov, V.N. Soloviev, L. Kibalnyk, H. Danylchuk and A. Matviychuk, eds. Proceedings of the Selected Papers of the 8th International Conference on Monitoring, Modeling & Management of Emergent Economy, M3E2-EEMLPEED 2019, Odessa, Ukraine, May 22-24, 2019. CEUR-WS.org, CEUR Workshop Proceedings, vol. 2422, pp.1–4. Available from: https://ceur-ws.org/Vol-2422/paper00.pdf.

Kiv, A.E., Soloviev, V.N., Semerikov, S.O., Danylchuk, H.B., Kibalnyk, L.O., Matviychuk, A.V. and Striuk, A.M., 2021. Machine learning for prediction of emergent economy dynamics. In: A.E. Kiv, V.N. Soloviev and S.O. Semerikov, eds. Proceedings of the Selected and Revised Papers of 9th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021. CEUR-WS.org, CEUR Workshop Proceedings, vol. 3048, pp.i–xxxi. Available from: https://ceur-ws.org/Vol-3048/paper00.pdf. DOI: https://doi.org/10.31812/123456789/4378

Klochko, O. and Fedorets, V., 2019. An empirical comparison of machine learning clustering methods in the study of Internet addiction among students majoring in Computer Sciences. CEUR Workshop Proceedings, 2546, pp.58–75.

Klochko, O., Fedorets, V., Tkachenko, S. and Maliar, O., 2020. The Use of Digital Technologies for Flipped Learning Implementation. In: O. Sokolov, G. Zholtkevych, V. Yakovyna, Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov and H. Kravtsov, eds. Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine, October 06-10, 2020. CEUR-WS.org, CEUR Workshop Proceedings, vol. 2732, pp.1233–1248. Available from: https://ceur-ws.org/Vol-2732/20201233.pdf.

Klochko, O.V., 2019. Matematychne modeliuvannia system i protsesiv v osviti/pedahohitsi [Mathematical modeling of systems and processes in education/pedagogy]. Druk.

Krämer, J., Schreyögg, J. and Busse, R., 2019. Classification of hospital admissions into emergency and elective care: a machine learning approach. Health Care Management Science, 22(1), pp.85–105. Available from: https://doi.org/10.1007/s10729-017-9423-5. DOI: https://doi.org/10.1007/s10729-017-9423-5

Kuncheva, L.I., 2014. Combining pattern classifiers: methods and algorithms. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118914564

Lee, T.H., Ullah, A. and Wang, R., 2020. Bootstrap Aggregating and Random Forest. In: P. Fuleky, ed. Macroeconomic Forecasting in the Era of Big Data: Theory and Practice. Cham: Springer International Publishing, pp.389–429. Available from: https://doi.org/10.1007/978-3-030-31150-6_13. DOI: https://doi.org/10.1007/978-3-030-31150-6_13

Leontyev, D.A., 2017. Psikhologiya smysla: priroda. stroyeniye i dinamika smyslovoy realnosti [The psychology of meaning: nature, structure and dynamics of meaningful reality]. Litres.

Linoff, G.S. and Berry, M.J.A., 2011. Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sons.

Moshtaghi, M., Bezdek, J.C., Erfani, S.M., Leckie, C. and Bailey, J., 2019. Online cluster validity indices for performance monitoring of streaming data clustering. International Journal of Intelligent Systems, 34(4), pp.541–563. Available from: https://doi.org/10.1002/int.22064. DOI: https://doi.org/10.1002/int.22064

Pacol, C.A. and Palaoag, T.D., 2020. Enhancing Sentiment Analysis of Textual Feedback in the Student-Faculty Evaluation using Machine Learning Techniques. 3rd International Conference On Academic Research in Science, Technology and Engineering. Available from: https://www.dpublication.com/wp-content/uploads/2020/11/3-3003.pdf.

Santos, S.G.T.d.C. and Barros, R.S.M. de, 2020. Online AdaBoost-based methods for multiclass problems. Artificial Intelligence Review, 53(2), pp.1293–1322. Available from: https://doi.org/10.1007/s10462-019-09696-6. DOI: https://doi.org/10.1007/s10462-019-09696-6

Semerikov, S.O., Vakaliuk, T.A., Mintii, I.S., Hamaniuk, V.A., Soloviev, V.N., Bondarenko, O.V., Nechypurenko, P.P., Shokaliuk, S.V., Moiseienko, N.V. and Ruban, V.R., 2021. Development of the computer vision system based on machine learning for educational purposes. Educational Dimension, 5, p.8–60. Available from: https://doi.org/10.31812/educdim.4717. DOI: https://doi.org/10.31812/educdim.4717

Souri, A., Ghafour, M.Y., Ahmed, A.M., Safara, F., Yamini, A. and Hoseyninezhad, M., 2020. A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment. Soft Computing, 24(22), pp.17111–17121. Available from: https://doi.org/10.1007/s00500-020-05003-6. DOI: https://doi.org/10.1007/s00500-020-05003-6

Subasi, A., Kevric, J. and Abdullah Canbaz, M., 2019. Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), pp.317–325. Available from: https://doi.org/10.1007/s00521-017-3003-y. DOI: https://doi.org/10.1007/s00521-017-3003-y

Sudakov, K.V., 2011. Funktsionalnyye sistemy [Functional systems)]. Izdatelstvo RAMN.

Suma, S.N., Nataraja, P. and Sharma, M.K., 2021. Internet Addiction Predictor: Applying Machine Learning in Psychology. Advances in Artificial Intelligence and Data Engineering. Springer, pp.471–481. DOI: https://doi.org/10.1007/978-981-15-3514-7_36

Tuysuzoglu, G. and Birant, D., 2020. Enhanced bagging (eBagging): A novel approach for ensemble learning. The International Arab Journal of Information Technology, 17(4), pp.515–528. Available from: https://doi.org/10.34028/iajit/17/4/10. DOI: https://doi.org/10.34028/iajit/17/4/10

Wallis, D., 1997. Just click no: Talk story about Dr. Ivan K. Goldberg and the internet addiction disorder. The New Yorker. Available from: http://www.newyorker.com/magazine/1997/01/13/just-click-no.

Weka 3: Machine Learning Software in Java, 2023. Available from: http://old-www.cms.waikato.ac.nz/~ml/weka/.

Young, K.S., 1998. Caught in the net: How to recognize the signs of internet addiction–and a winning strategy for recovery. John Wiley & Sons.

Young, K.S., 1998. Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1(3), pp.237–244. Available from: https://doi.org/10.1089/cpb.1998.1.237. DOI: https://doi.org/10.1089/cpb.1998.1.237

Yuryeva, L.N. and Bolbot, T.Y., 2006. Kompyuternaya zavisimost: formirovaniye, diagnostika, korrektsiya i profilaktika [Computer addiction: formation, diagnostics, correction and prevention]. Dnepropetrovsk: Porogi. Available from: http://kingmed.info/media/book/3/2673.pdf.

Zahorodko, P.V., Modlo, Y.O., Kalinichenko, O.O., Selivanova, T.V. and Semerikov, S.O., 2020. Quantum enhanced machine learning: An overview. CEUR Workshop Proceedings, 2832, pp.94–103. DOI: https://doi.org/10.31812/123456789/4357

Zahorodko, P.V., Semerikov, S.O., Soloviev, V.N., Striuk, A.M., Striuk, M.I. and Shalatska, H.M., 2021. Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience. Journal of Physics: Conference Series, 1840(1), p.012021. Available from: https://doi.org/10.1088/1742-6596/1840/1/012021. DOI: https://doi.org/10.1088/1742-6596/1840/1/012021

Zelinska, S., 2020. Machine learning: Technologies and potential application at mining companies. E3S Web of Conferences, 166, p.03007. Available from: https://doi.org/10.1051/e3sconf/202016603007. DOI: https://doi.org/10.1051/e3sconf/202016603007

Zhong, Y., Yang, H., Zhang, Y. and Li, P., 2020. Online random forests regression with memories. Knowledge-Based Systems, 201, p.106058. DOI: https://doi.org/10.1016/j.knosys.2020.106058

Downloads

Published

2024-03-20

Issue

Section

Competency-Based Education Platforms and Social Analytics in Education

How to Cite

Klochko, O.V., Fedorets, V.M. and Klochko, V.I., 2024. Empirical comparison of clustering and classification methods for detecting Internet addiction. CTE Workshop Proceedings [Online], 11, pp.273–302. Available from: https://doi.org/10.55056/cte.664 [Accessed 15 October 2024].
Received 2023-10-25
Accepted 2023-12-17
Published 2024-03-20

Similar Articles

1-10 of 280

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)