An augmented reality-based virtual chemistry laboratory to support educational and research activities of 11th grade students




augmented reality, AR.js, A-Frame, markers, virtual chemistry laboratory, chemistry education, high school students


The organization of high school students' research and learning activities in chemistry requires a significant amount of experimental work. The performance of experimental work in chemistry at school faces a number of problems, both purely material and organizational, to which the need for distance learning has recently been added. This article describes the state of use of augmented reality technologies in modern chemistry education and the possibilities of using augmented reality technologies to support students' learning and research activities in chemistry. To solve the research tasks, cloud-based augmented reality development tools (A-Frame and AR.js) were used. The developed tool is a virtual chemistry laboratory using augmented reality technologies: individual markers correspond to reagents, and a pairwise combination of markers triggers a video recording of chemical interaction between the corresponding pair of reagents. The article describes the development of augmented reality software to support eleventh graders' learning and research activities in chemistry in the form of an augmented reality-based virtual chemistry laboratory and its implementation in the teaching process.


Download data is not yet available.
Abstract views: 393 / PDF (Ukrainian) views: 131


Quote by Confucius: “Tell me and I will forget, show me and I may re...” (2012), URL

Dáskalos - Prefrontal Cortex (2015), URL

StudyMarvel - Chemistry AR (2016), URL

Law of Ukraine “On Education”. Bulletin of the Verkhovna Rada (38-39) (2017), URL, article 380

Arloon Chemistry (2019), URL

A-Frame – Make WebVR (2023), URL

Abriata, L.A.: Building blocks for commodity augmented reality-based molecular visualization and modeling in web browsers. PeerJ Computer Science 2020(2) (2020), DOI:

Aristov, M.M., Moore, J.W., Berry, J.F.: Library of 3D Visual Teaching Tools for the Chemistry Classroom Accessible via Sketchfab and Viewable in Augmented Reality. Journal of Chemical Education 98(9), 3032–3037 (2021), DOI:

Austria-Melo, L.F., Cuellar-Castillo, J., Hernández, A.A., Montiel, C., Fabila-Bustos, D.A., Hernández-Chávez, M.: Comparison of development and characteristics of several educational tools in augmented reality for visualization of 3D models difficult to understand. Chemistry application case. In: 2022 IEEE Mexican International Conference on Computer Science (ENC), pp. 1–7 (2022), DOI:

Bobkova, O.S., Bukhtiiarov, V.K., Valiuk, V.F., Velychko, L.P., Dubovyk, O.A., Pavlenko, V.O., Puhach, S.V.: Chemistry. 10-11 grades. Profile level: The curriculum for institutions of general secondary education (2017), URL

Caudell, T.P., Mizell, D.W.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, vol. ii, pp. 659–669 (1992), DOI:

Cortes Rodriguez, F., Krapp, L.F., Dal Peraro, M., Abriata, L.A.: Visualization, Interactive Handling and Simulation of Molecules in Commodity Augmented Reality in Web Browsers Using moleculARweb’s Virtual Modeling Kits. CHIMIA 76(1-2), 145 (Feb 2022),, URL DOI:

Cortés Rodrı́guez, F., Dal Peraro, M., Abriata, L.A.: Online tools to easily build virtual molecular models for display in augmented and virtual reality on the web. Journal of Molecular Graphics and Modelling 114, 108164 (2022), ISSN 1093-3263, DOI:

CreativiTIC: QuimicAR - ChemistryAR (2014), URL com/store/apps/details?id=com.CreativiTIC.AugmentedClass&hl=en&gl=US

DAQRI: Elements 4D (2014), URL

Dubovyk, O.A., Bobkova, O.S., Voronenko, T.I., Hlazunov, M.M., Ivakha, T.S., Rohozhnikova, O.V.: Chemistry. 10-11 grades. Level of standard: The curriculum for institutions of general secondary education (2017), URL

Fombona-Pascual, A., Fombona, J., Vicente, R.: Augmented Reality, a Review of a Way to Represent and Manipulate 3D Chemical Structures. Journal of Chemical Information and Modeling 62(8), 1863–1872 (2022), DOI:

HO “Maisternia osvitnikh innovatsii LiCo“’: LiCo.Organic (2020), URL

Kniazian, M.A.: The school-research activity of students as a means of professional important knowledge actualization (on the basis of the study of foreign languages). The dissertation for the candidate degree of pedagogical sciences, in speciality 13.00.01 - theory and history of pedagogics, Odessa (1998), URL

Larngear Technology: Atomic Structure AR Learning Gear (2012), URL

Maier, P., Klinker, G.: Augmented Chemical Reactions: An Augmented Reality Tool to support Chemistry Teaching. In: 2013 2nd Experiment@ International Conference (’13), pp. 164–165 (2013), URL DOI:

MEL Science: Chemistry (2023), URL

Mozilla Mixed Reality: Introducing A-Frame: Building Blocks for WebVR (2015), URL

Nechypurenko, P., Evangelist, O., Selivanova, T., Modlo, Y.O.: Virtual Chemical Laboratories as a Tools of Supporting the Learning Research Activity of Students in Chemistry While Studying the Topic “Solutions”. In: Sokolov, O., Zholtkevych, G., Yakovyna, V., Tarasich, Y., Kharchenko, V., Kobets, V., Burov, O., Semerikov, S., Kravtsov, H. (eds.) Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine, October 06-10, 2020, CEUR Workshop Proceedings, vol. 2732, pp. 984–995, (2020), URL

Nechypurenko, P., Semerikov, S., Selivanova, T., Shenayeva, T.: How can the principles of learning be used to select the best ICT tools for computer-based chemistry instruction in high school? Educational Dimension 59, 188–241 (2022),, URL DOI:

Nechypurenko, P.P., Semerikov, S.O., Tomilina, L.I.: Theoretical and methodical foundations of using ICT as a tools of forming the senior pupils’ research competencies in the chemistry profile learning, Theory and methods of e-learning, vol. IX. Kryvyi Rih National University, Kryvyi Rih (2018), URL

Prasanson, P., Thanyaphongphat, J., Pinthong, C.: ISOCHEM: Development of an Interactive 3D Game on the Web in Augmented Reality to Enhance Students’ Learning of Isomers of Organic Chemistry. In: Rodrigo, M.M.T., Iyer, S., Mitrovic, A., Cheng, H.N.H., Kohen-Vacs, D., Matuk, C., Palalas, A., Rajenran, R., Seta, K., Wang, J. (eds.) 29th International Conference on Computers in Education Conference, ICCE 2021 - Proceedings, vol. 2, p. 207 – 212, Asia-Pacific Society for Computers in Education (2021), URL

Shepiliev, D.S., Modlo, Y.O., Yechkalo, Y.V., Tkachuk, V.V., Mintii, M.M., Mintii, I.S., Markova, O.M., Selivanova, T.V., Drashko, O.M., Kalinichenko, O.O., Vakaliuk, T.A., Osadchyi, V.V., Semerikov, S.O.: WebAR development tools: An overview. In: Kiv, A.E., Semerikov, S.O., Soloviev, V.N., Striuk, A.M. (eds.) Proceedings of the 3rd Workshop for Young Scientists in Computer Science & Software Engineering (CS&SE@SW 2020), Kryvyi Rih, Ukraine, November 27, 2020, CEUR Workshop Proceedings, vol. 2832, pp. 84–93, (2021), URL

Sliwinski, E.P., Kabeshov, M.A., Ley, S.V.: HTMoL - AR plugin (2019), URL

Syrovatskyi, O.V., Semerikov, S.O., Modlo, Y.O., Yechkalo, Y.V., Zelinska, S.O.: Augmented reality software design for educational purposes. In: Kiv, A.E., Semerikov, S.O., Soloviev, V.N., Striuk, A.M. (eds.) Proceedings of the 1st Student Workshop on Computer Science & Software Engineering, Kryvyi Rih, Ukraine, November 30, 2018, CEUR Workshop Proceedings, vol. 2292, pp. 193–225, (2018), URL

Virtual Space LLC: AR VR Molecules Editor Free (2019), URL






How to Cite

Nechypurenko, P.P., Semerikov, S.O. and Pokhliestova, O.Y., 2023. An augmented reality-based virtual chemistry laboratory to support educational and research activities of 11th grade students. Educational Dimension [Online], 8, pp.240–264. Available from: [Accessed 23 May 2024].
Received 2022-06-01
Accepted 2022-12-31
Published 2023-01-16

Similar Articles

1-10 of 133

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>