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Abstract. Education often involves categorizing students into broad groups based on perceived attributes
like academic abilities, learning pace, and unique challenges. However, the validity and applicability
of these stereotypes require closer examination. This research investigates student grouping factors,
exploring both conventional variables like gender and education level, as well as innovative methodologies
that utilize students’ problem-solving behaviors. The study critically evaluates the effectiveness of these
grouping techniques in capturing and distinguishing students’ diverse learning patterns. Through
a comprehensive analysis of ten methodologies used to cluster students in traditional programming
courses and programming MOOCs, we aim to reveal how students from different cohorts exhibit varying
learning behaviors and outcomes. By examining diverse models of student learning, we assess whether
students in distinct groups indeed demonstrate discernible disparities in their educational journeys. Our
meticulous data analysis uncovers compelling insights that challenge the notion of predefined student
stereotypes and their practical utility within group-based adaptation settings. This research contributes
to the discourse on student grouping by highlighting the limitations of traditional categorizations
and introducing innovative approaches to understanding student diversity and tailoring educational
interventions accordingly. By transcending simplistic generalizations, we strive to foster a nuanced
understanding of students’ individual strengths, challenges, and potentials, promoting inclusive and
effective educational practices.
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1. Introduction

It has been observed that student performance in a MOOC could vary considerably with
many students solving only a fraction of problems or dropping from the MOOC completely
[3]. Consequently, considerable research also focused on explaining and predicting student
performance in MOOC. It has been argued that the ability to predict performance could help
to identify a cohort of weaker students sufficiently early to help them in succeeding a MOOC.
Early attempts to identify weak and strong students focused mostly on examining various
demographic features such as gender, level of education, or country of origin as a source for
performance prediction [3]. Researchers would examine classification approaches employed to
categorize the diversity of studies in educational data mining and review the research problems
addressed using these methods [2]. Studies also explored the challenges and opportunities
in the development of effective Social Learning Analytics (SLA), highlighting the turbulent
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nature of learning landscapes driven by technology [7]. These attempts brought little success,
on the contrary, a significant number of both strong and weak students were found within
each demographic category. The more recent research attempted to identify cohorts of strong
and weak students by examining student course behavior through MOOC log mining. This
research focused mostly on coarse-grain traces of student access to various parts of MOOC
such as videos, questions, or discussion forums. While many attempts focused on behavior
mining brought interesting results [23, 25, 26], the results of different studies were to some
extent contradictory. In some cases more diligent access to course content was a positive sign of
good performance [22]. In other cases, it was negatively correlated with success [4], or skipping
content was a good sign [11]. It has been argued that patterns of student access to course
content are, to a considerable extent, influenced by the starting level of knowledge rather than
by differences in student approaches to learning.

The relevance of Massive Open Online Courses (MOOCs) in contemporary education cannot
be overstated. MOOCs have revolutionized the way individuals access and engage with educa-
tional content. In an era marked by the democratization of knowledge and the increasing demand
for lifelong learning, MOOC:s offer a flexible and accessible avenue for learners worldwide.
Their significance has been further magnified in recent times, as the global COVID-19 pan-
demic forced traditional educational institutions to explore online alternatives. MOOCs became
instrumental in ensuring continuity in education during these challenging times, showcasing
their adaptability and scalability.

Moreover, MOOCs have opened up educational opportunities to a diverse audience, tran-
scending geographical boundaries and economic constraints. They provide a platform for
learners to acquire new skills, explore different fields of study, and enhance their employability.
The accessibility of MOOCs has made them particularly appealing to working professionals
seeking to upskill or pivot to new career paths.

Despite their transformative potential, MOOCs also face challenges, including low completion
rates and the need for effective strategies to support learner engagement and success [12]. Hence,
understanding student performance and predicting outcomes in MOOCs remains a critical area
of research.

Our research separates strong and weak learners by using a very different kind of behavior
analysis. First, we focused on problem-solving behavior, which, we hoped, is less affected by
the starting knowledge and more related to student individual learning approach than content
access behavior. Second, we examined student behavior in a more finer-grain level tracing
individual steps to solve each problem rather than registering all that as one content-level access.
Finally, before moving to group elicitation and clustering, we ensured that we found reliable and
repeatable patterns of behavior for every student. The result of our behavior mining attempt was,
however, unexpected. While we were able to discover groups of students that considerably differ
by their problem-solving behavior patterns, these groups were not the expected stereotypical
“weak” and “strong” students and were useless for stereotype-based performance prediction.
Instead, the differences between groups represented different problem-solving styles that have
some correlation with performance, but, as our data demonstrated, does not define it.

In this paper, we offer a brief review of similar work including MOOC behavior mining
and analysis of assessment data in programming. In two separate sections, we introduce our
dataset and the performance prediction approach that we use to assess our ability to distill
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performance-based stereotypes. To demonstrate some simple application of this approach, we
start by confirming the absence of demography-based stereotypes. Following that, we present
our sequence-based behavior mining approach and its application to our dataset to discover
patterns of student problem-solving behavior. Next, we present and discuss the results of
behavior-based clustering. We conclude with a general discussion of lessons learned.

1.1. Decoding programming assessment data

The scrutiny of programming problem solutions submitted by students as assignments has
garnered considerable interest in recent years. In recent studies, the utilization of submission
data has been instrumental in uncovering diverse approaches, both correct and incorrect, to
tackle the same problem [9, 15]. Moreover, researchers have employed this data to construct an
intelligent scaffolding system [21], model students’ knowledge within the context of program
development [20, 28], predict students’ grades [16], and gain insights into students’ coding
behavior through conceptual analysis of program code [14].

By utilizing the assembly and delivery information pertaining to participants enrolled in a
Java Massive Open Online Course (MOOC), this scholarly article brings a noteworthy value
to the current repository of knowledge on the analysis of assessment information. This study
encompasses three principal aims: (1) comprehending the distinct patterns characterizing
individual problem-solving behaviors in coding, (2) evaluating the impact of these identified
behaviors on students’ performance within the programming course, and (3) investigating the
ramifications of these behaviors for the accurate modeling of student knowledge.

2. Data

Sourced from a selection of four core programming study programs, which encompassed
Massive Open Online Courses (MOOCs), this study acquired information from a research-
oriented European university spanning the years 2014 and 2015. These courses primarily
focused on introducing students to the programming concepts using the Java programming
language. Each course spanned a duration of seven weeks and involved a series of programming
assignments of varying complexity. To carry out their tasks, students utilized the NetBeans
integrated development environment.

The programming tasks were administered using the Test My Code-plugin [24], a tool em-
ployed for automatic code assessment and data collection. Data from students who granted
permission for this study were meticulously recorded, encompassing their keystrokes, assign-
ment specifics, and unique student identifiers. The collected data was then aggregated and
analyzed to capture noteworthy instances within the respondents’ performance. Specifically,
this study focused on key events such as running the program, executing program tests, and
assessment. Furthermore, to facilitate a thorough examination of the transitional stages leading
to significant events, the initial five general occurrences involving the insertion or deletion
of text were also incorporated. Posthoc analysis employing JUnit test sets was conducted to
extract insight. Furthermore, JavaParser [13] was employed to extract programming concepts
associated with each problem-solving state.
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Alongside the collection of programming process data, the subjects also took up an exercise,
which inquired about their age, sex, programmer experience, and latest educational qualification.
2,739 unique students initially enrolled in the courses. 1,788 students formed the initial sample
(with a cutoff at 2,500 recorded events, representing approximately the 33rd percentile of the
workload during the first week of the course). The number of students who completed the
information survey was 798, and they constitute the final batch we analysed. Table 1 provides
essential statistical information regarding all the participants.

Table 1
Demographic profile of the students who participated in the courses.
Student Age Gender Programming Prior education
Course sample background

Initial Final{min mean max| M F NA|None Some More |Pri.&Sec. College Grad
MOOC 2014 1286 90 | 16 323 65 |90% 9% 1% | 4% 81% 15% 63% 12%  25%
Traditional 2014| 263 192 | 18 23.2 44 |62% 38% 0% | 59% 38% 3% 78% 3% 19%
MOOC 2015 984 372 | 15 308 66 |77% 22% 1% | 30% 60% 10% 58% 13% 29%
Traditional 2015| 206 144 | 19 24.3 45 |63% 35% 2% | 56% 39% 5% 74% 3%  23%

The timeframe, spanning the years 2014 and 2015, may be considered somewhat dated
in contemporary times, but its relevance persists in programming and educational research.
The study’s focus on introducing students to Java programming and fundamental concepts
remains pertinent, as core programming principles endure amidst technological evolution.
Moreover, insights into Massive Open Online Courses (MOOCs) engagement from this era
offer valuable lessons in the face of the increased reliance on online education today. While
specific tools like NetBeans and code assessment plugins may have evolved, the overarching
idea of using integrated development environments (IDEs) and automated code assessment
tools remains relevant for designing modern programming courses. The collection and analysis
of programming process data, including keystrokes and programming concepts, continue to
inform improvements in programming education and tools. Demographic data concerning age,
gender, experience, and qualifications, *which can be seen in table 1 still influences learner
performance and engagement, offering insights into modern-day learners. Finally, the study’s
longitudinal approach, tracking students over time, provides enduring value in understanding
learning patterns and the long-term impact of programming education.

3. The assessment approach

In this study, our objective is to investigate the effectiveness of segregating students into
various cohorts for the purpose of adaptation per group. Specifically, our aim is to determine
whether distinct groups of students can be identified, exhibiting diverse learning patterns
(such as traditionally labeled “high-performing” and “low-performing” students). To assess the
achievement of our desired “adaptation-level” division across multiple grouping strategies, we
employ variations in models depicting student learning within each group as a criterion. We
establish a guiding principle that distinct differences in learning approaches among groups
should be reflected in the performance-based variations observed within their respective models.
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Prior to exploring innovative methods of segregating students based on how they rank as a
programmer, our examination observed relatively easy strategies for grouping. These simpler
approaches involve pre-existing knowledge as well as post hoc information. We compared the
advanced techniques with the inferior ones and assessed the distinctiveness of our behavior-
based approach. Once the evaluation of the simpler grouping methods is completed, we will
revolve around the exploration of student clustering based on what we mined on programmer
behavior. To validate the efficacy of all the methods employed, we will utilize learning and
prediction models.

4. Using models of student learning for grouping/cluster
validation

4.1. Modeling student learning

Before discussing validation of student groupings/clusters, we would like to describe our student
modeling approach. For modeling student knowledge acquisition, we considered models based
on logistic regression. In particular, we used a model called Performance Factors Analysis [18].
Within this model, individual student abilities are represented as arbitrary pointers denoted by
0;, while concept difficulties are shown as fixed-factor intercepts denoted by ;. Moreover, the
learning rates for skill acquisition in all submissions are represented by ~y; and py, , respectively.
The canonical form of the Probabilistic Factor Analysis (PFA) is expressed in equation (1). In
relation to the current assessment, the variables s;; and f;; denote the individual counts of
accomplished and unsuccessful attempts made on a particular concept beforehand.

Pr(Y; =110, 8,7, p) = inv.logit (@- + ) (vsik + Pkfik)) (1)
k

The selection of our modeling approach was driven by the cumulative nature of PFA, wherein
the combined influence of various elements within a student’s work contributes to an aggregated
signal that determines the overall success or failure. On the other hand, the contrasting modeling
methodology known as Bayesian Knowledge Tracing (BKT) [5] is not specifically designed to
address scenarios involving the presence of multiple interconnected concepts within student
interactions. This limitation arises from the violation of the independence assumptions inherent
in the Hidden Markov Model employed by BKT.

Two substantial modifications were implemented in the PFA model, leading to improved
overall model fit. The first significant change involved transitioning from globally defined
concepts applicable to all problems to a more refined approach using within-problem concepts.
Indeed, a for-loop concept crucial for one problem could be irrelevant for another. Second, we
used each concept’s usage count within the problem code toward the opportunity count and
loglp-transformed opportunity counts after that. The effectiveness of both these alterations
was demonstrated in the study conducted by Yudelson et al. [28]. Their investigation involved
analyzing data from the same data source but across different academic years. These modi-
fications only changed the definitions of what is a concept and how the success and failure
attempts are accumulated.
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Unlike the study conducted by Yudelson et al. [28], we adopted a distinct approach to data
preprocessing. Our approach involved several key differences. Firstly, we treated each snapshot
of student code as an individual and self-contained unit of data. The success of a snapshot
was determined by the passing of all associated tests, while unsuccessful attempts indicated
when the code failed to pass all tests. Secondly, our exclusive focus was on snapshots where
students intentionally tested, executed, or finalized their code, while disregarding intermediate
snapshots for the purpose of student modeling. Thirdly, our analysis encompassed all the
concepts employed in students’ code, rather than solely examining modifications in concepts
with or without specific considerations for removals, as described in [28]. We found that this
approach, under our data preprocessing setup, yielded better model performance. Lastly, our
analysis was restricted to a final sample size of 798 out of the initial 1788 students.

As a result of our modifications, the number of concept parameters in the PFA increased from
143 x 3 -1 =428 to 143 x 240 x 3 — 1 = 102,959. Considering the sparsity of the problem-concept
matrix, the parameter count was effectively reduced to 40,625 (13,542 x 3 — 1). Moreover,
given the substantial data volumes (approximately 392,000 student submissions), conventional
statistical packages were not feasible for analysis. To address this, we employed a customized
version of the LIBLINEAR tool [6]. The modification, available at !, introduced an additional
solver capable of utilizing grouped L2-penalties to approximate random factors. This modified
version of LIBLINEAR retained the original tool’s ability to effectively handle large datasets.

4.2. Validating by cluster models’ cross-prediction

We sought a minimum of two distinct cohorts within our sample of students who demonstrate
contrasting learning patterns. Drawing inspiration from [27], we adopt a specific methodology.
Initially, we divide the relevant students among n number of clusters. Subsequently, we conduct
20 samplings within every group, extracting 80 students for training purposes and reserving an
additional 20 students for testing. From each training set comprising 80 students, we construct
a unique subsample model. Next, we utilize the 20n models and forecast three sub samples: one
aligning with the group for which the model was developed, and the remaining two originating
from the other group(s). Ultimately, we plot n* model accuracies, capturing both mean values
and standard errors. Out of these accuracies, n reflect model performance within each specific
group, while the remaining accuracies represent performance comparisons between the groups.

We categorize individuals into separate cohorts, characterized by unique patterns of knowl-
edge acquisition, is predicated on the discernible differentiation between the performance of
within-cohort models and across-cohort models. Specifically, we expect intra-group models to
surpass that of inter-group. To exemplify this criterion, consider the depiction in figure 1, with
the “ideal” separation highlighted in vivid red. In this scenario, the model developed on group
A exhibits superior performance compared to that of group B when making predictions based
on insights from group A. This clear delineation between groups A and B indicates that their
respective models, when cross-predicting, exhibit subpar performance beyond their original
source student sub-samples. An “expected” case, symbolized by the bold blue color, recurrently
observed in [27], demonstrates one model’s dominance over the others regardless of the test

"https://github.com/IEDMS/liblinear-mixed-models
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data sub-sample. Instances of this nature are illustrated by the blue line, representing model B
versus model C. Lastly, a “sub-optimal” scenario, denoted by the vibrant green color, materializes
when one model prevails on its “own ground” (model A) but fails to outperform or succumbs to
the other model (model C).

Models build on student groups
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Figure 1: Differences accuracy between the groups are represented by the mean values and standard
errors. An ideal scenario is denoted by red arrows, while a expected case is indicated by blue arrows.
Similarly, a sub-optimal situation is highlighted with green arrows.

5. Simple student grouping

To demonstrate the practical implementation of our assessment approach, we initially explore
more straightforward methods of student grouping based on demographics and course perfor-
mance. This data is conveniently accessible to us through background information collected
throughout the course or by utilizing overall course statistics available at the conclusion of the
study. The summarized groupings resulting from these approaches are outlined in the first five
rows of table 2.

Gender. Approximately 71% of the student population consisted of males.

Education level (Edu.) resulted in three distinct groups. Among the students, 524 individuals
had completed Primary and Secondary Education, while 154 students pursued higher education
at the college level. Additionally, 120 students were enrolled in graduate-level programs.

Transaction volume (#Trans.). The groups formed were low, medium, and high, considering
the cumulative sum of attempts made at solving problems. An investigation conducted by the
authors in [27] employed a comparable methodology to examine student groupings. Their
findings indicated that a subset of students who contributed a more extensive volume of data
and covered a wider range of topics exhibited a notably superior global model.

Problems Solved (P.Solv.). The results were generated using an agglomerative approach, uti-
lizing Euclidean distance, applied to four course-level count variables: problems resolved (with
at least one submission achieving perfect correctness), partially resolved problems (with at least
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Table 2
Validating approaches to clustering students.
Group/cluster label overlaps Prediction diff.

Approach Cluster sizes | Edu. #Trans. P.Solv. %Corr.| B1 B2 B3 B4 B5 | Score folzjlsot:er
Gender? 570, 228 0.36  0.03 0.06 0.07 |0.10 0.02 0.13 0.18 0.19| 0.33 F.
Edu.* 524, 154, 120 0.04 0.12 0.06 |0.18 0.15 0.12 0.24 0.12| 0.00
#Trans} 266, 266, 266 0.40 0.30 |0.18 0.21 0.34 0.21 0.24| 0.67 Hi
P.Solv*t 218, 316, 264 0.09 |0.15 0.18 0.31 0.09 0.04| 0.00
%Corr.} 266, 266, 266 0.22 0.18 0.12 0.28 0.28 | 0.00
B1 383, 415 0.58 0.43 0.58 0.51| 0.67 1
B2 416, 382 0.70 0.44 0.51| 0.67 1
B3 258, 158, 382 0.40 0.51| 0.67 2
B4 295,503 0.69 | 0.67 1
B5 389, 272, 137 0.67 2

1 Male and Female
I These groupings have 3 levels: Low, Medium, and High

one submission scoring above 0% correctness), attempted but unresolved problems (with at least
one submission scoring 0% correctness), and unattempted problems. This grouping analysis pro-
duced distinct student groups: low (predominantly characterized by minimal problem attempts),
high (mostly demonstrating successful problem-solving), and medium (encompassing all other
students). This grouping scheme serves as an overarching measure of student performance.

Percent Correct (%Corr). The procedure categorized students into percentile-based groups
(low, medium, and high) determined by their overall percentage of correctness during intentional
code testing, execution, or submission. This classification differentiated students based on their
level of conscientiousness.

5.1. Validating simple groupings

Top left quadrant of the “Group/cluster label overlaps” columns in table 2 contains pairwise
similarities of five simple groupings. The similarities are computed as the largest overlap
between the breakdowns of the students into the clusters over the total of 798 students. The
overlaps are scaled to assume values from 0 to 1. There is no general threshold that we are
aware of to be comparing these similarities against. We used < 0.40 as an ad-hoc rule of thumb.
Thus, all pairwise overlaps of simple groupings are small enough to be noteworthy.

We prioritize the group separation for cross-prediction in the following order: ideal, expected,
and suboptimal. To simplify the assessment process, we assign scores to the separation levels seen
in a group/cluster. A score of 1.0 indicates an ideal separation, a score of 0.67 suggests an expected
separation, a score of 0.33 signifies a suboptimal separation, and a score of 0.00 indicates no
significant separation. The discrepancies when making predictions are captured by “Prediction
diff" columns of table 2, specifically in the top five rows. Amidst the five methodologies explored,
solely two manifest non-zero ratings. Concerning gender distinctions, the model fashioned
for female learners surpasses the model tailored for male learners in prognosticating test data
pertaining to females, while both models exhibit commensurate performance in foretelling test
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data concerning males. The model associated with the cluster featuring the highest student
contribution exhibits superior performance compared to the other models, regardless of the test
data being predicted.

6. Behavior-mining for clustering students

The fundamental concept underlying our behavior mining approach involves capturing and
characterizing student problem- solving behavior at a micro-pattern level. These micro-patterns
serve to elucidate the progression of students from incorrect solutions to the correct solution, as
well as the growth of their knowledge across successive assignments. Our approach encompasses
three distinct parts, each described in detail below.

In Part A, we initiated the process by analyzing and categorizing the intermediate program-
ming steps taken by students, thereby capturing their programming behavior at each step.

In the subsequent stage, denoted as Part B, we utilized methodologies in consecutive motif
extraction to identify consecutive micro-motifs from the amassed data. These micro-patterns
represent the recurring patterns of actions undertaken by students as they navigate through
the problem-solving process.

Building upon the extracted micro-patterns, Part C involved constructing a profile vector, or
what we refer to as a “genome”. This genome includes frequently occurring micro-patterns and
summarizes an individual’s ability to solve problems.

In order to ascertain the strength and dependability of our methodology in extracting problem-
solving behaviors, we undertook a comprehensive assessment of the consistency of the behavior
vector obtained from the micro-patterns. This evaluation was conducted to ensure the robustness
and reliability of our approach in identifying and analyzing problem-solving behaviors.

6.1. Part A: Analyzing intermediary programming phases

In our quest to understand student problem-solving behavior, our initial focus was on inves-
tigating the trajectory of students as they tackled coding challenges. To gain insights, we
employed a collection of intermediate programming steps known as “snapshots”, which were
captured during students’ coding activities. These snapshots meticulously documented the code
submissions and their corresponding correctness by evaluating them against a comprehensive
suite of problem-specific tests.

Figure 2 depicts a pair of sequential snapshots representing a student’s progress in solving
the problem titled “Bigger Number”. This particular problem required the student to develop
an application capable of taking a couple of inputs as numerals before generating an output
representing the bigger numeral. Student’s code was subjected to three tests to evaluate its
correctness. Test 1 and Test 2 verified the accuracy of the output when the first or second
number was smaller, respectively. Test 3 aimed to ensure that the student did not include any
unnecessary information in their program’s output.

In the presented example, the initial snapshot (figure 2) showcased the student’s initial attempt,
which successfully passed Test 1 and Test 2 for cases when the first or second number was
smaller, respectively. However, it failed Test 3 as it generated additional output when the second
number was smaller. Following feedback on this issue, the student made improvements by
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1 import java.util.Scanner;

2 public class BiggerNumber {

3 public static void main(String[] args) {

4 Scanner input = new Scanner(System.in);

5 System.out.println("Type a number: ");

6 int firstNumber = Integer.parseInt(input.nextLine());

7 System.out.println("Type another number: ");

8 int secondNumber = Integer.parselnt(input.nextLine());

9 if (firstNumber > secondNumber)

10 System.out.println("The bigger number was: " + firstNumber);
11 if (firstNumber < secondNumber)

12 System.out.println("The bigger number was: " + secondNumber);
13 else

14 System.out.println("Numbers were equal: ");

15 }

16 }

(a)

1 import java.util.Scanner;

2 public class BiggerNumber {

3 public static void main(String[] args) {

4 Scanner input = new Scanner(System.in);

5 System.out.println("Type a number: ");

6 int firstNumber = Integer.parseInt(input.nextLine());

7 System.out.println("Type another number: ");

8 int secondNumber = Integer.parselnt(input.nextLine());

9 if (firstNumber > secondNumber)
10 System.out.println("The bigger number was: " + firstNumber);
11 else if (firstNumber < secondNumber)
12 System.out.println("The bigger number was: " + secondNumber);
13 else
14 System.out.println("Numbers were equal: ");
15 }
16 }

(b)

Figure 2: Bigger Number program: (a) 1% snapshot, (b) 2" snapshot.

incorporating an “else if” statement in their code (figure 2). Consequently, the modified program
successfully passed Test 3, demonstrating the student’s ability to avoid printing unnecessary
information when there was a difference between the numbers.

Keeping up with Hosseini, Vihavainen and Brusilovsky [14], our approach to extracting
programming behavior involves an initial examination of conceptual disparities between con-
secutive snapshots. This entails observing the inclusion or exclusion of specific concepts in each
step and analyzing the correlation between these changes and the improvement or deterioration
of program correctness. The quantification of conceptual discrepancies between two snapshots
is determined by calculating the variance in concept counts. To mine these behaviors compre-
hensively, our methodology encompasses two primary stages: (a) the categorization of student
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snapshot sequences within each problem, and (b) the identification of frequent behavioral
micro-patterns (referred to as “genes”) through sequence mining techniques applied to the
labeled snapshots.

In the process of labeling the sequence of snapshots for each student in a given problem,
the captured snapshots pertaining to that student stod collected then arranged chronologically.
Labels were assigned to each snapshot in the sequence, taking into account the alterations
made to the programming concepts and the degree of correctness in relation to the previous one.
Coming to the sequence’s initial snapshots, the corresponding prior snapshot for each one,
sequentially speaking, is tagged as (), indicating no concepts and no passed tests. The labels
employed for snapshot categorization are detailed in table 3.

Table 3
Programming style: snapshot-labeling.
Concepts
Correctness Increase Decrease Same
Increase a b c
Same d e f
Decrease g h i
Zero j k 1

To provide a practical example, let us consider the first snapshot in figure 2. Upon closer
inspection, it is evident that the student has incorporated supplementary elements, resulting in
an increased ratio of successful tests to 0.67 (passing two out of three tests). Consequently, the
first snapshot is assigned the label “a”. Similarly, for the second snapshot depicted in figure 2,
the same label is also assigned. This determination is based on the student’s inclusion of an
additional concept (“if else”) and a perfect ratio of passed tests (passing all three tests). As the
Bigger Number problem only encompasses two snapshots for this particular student, the chain
is tagged “_aa_” The “_” symbol denotes the beginning and end points of the sequence.

To enhance the distinction of brief steps from extended ones, an additional aspect can be
incorporated into each label, signifying the duration of time invested in a snapshot. This aspect
holds significance as it sheds light on the problem-solving behavior. To account for variations in
programming speed among different students, individualized thresholds are employed to classify
the duration dedicated to a stage or phase as brief or extended. Consequently, the labeling
system encompasses characters in lower-case i.e. a to 1. This denote small steps. Corresponding
upper-case letters i.e. A to L signify extended actions. Let us consider the student presented in
figure 2. 10 minutes is the median time distribution. 15 minutes went on code development in
the initial snapshot. A tiny modification in the subsequent snapshot took an extra 2 minutes.
The resulting label for their sequence of snapshots would be “_Aa_”.

Overall, our labeling process encompassed a total of 137.504 snapshot sequence labels, derived
from 1788 students’ attempts. There were 241 distinct exercises. The value of these sequences’
steps exhibited variation, spanning from 1 to 475, with an average size of 5.3. Specifically, 92.549
chains consisted of more than one step, 64.328 sequences consisted of more than two steps,
48.195 sequences consisted of more than three steps, and 38.768 sequences consisted of more
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than four steps.

6.2. Part B: Extracting subtle patterns when solving problems

To extract frequent recurring styles in chains of problems solved, we utilized the SPAM algorithm
[1], employing the implementation technique described in [8]. The information provided
comprised 9254 sequences encompassing a minimum of two steps. Through the SPAM algorithm,
we discovered trends manifesting throughout the minsup pertaining to our respondents. Our
tactic was to use a modest threshold applicable to less common trends that may exclusively
emerge within smaller student groups. Additionally, we enforced the absence of gaps during the
SPAM analysis to ensure that the identified patterns consisted of contiguous steps. Lastly, the
patterns were limited to a couple of steps in general to enable better tracking of the students’
coding skill progression.

Refer to the snapshot?. Table 4 presents 20 of the most prevalent trends along with corre-
sponding frequencies of happening.

Table 4
Frequently occurring programming patterns in students’ problem-solving sequences: top 20 patterns.

Rank  Pattern  Frequency

1 AA 19.78%
2 AD 13.75%
3 _AA 12.17%
4 Aa 9.75%
5 AA_ 8.69%
6 DD 8.53%
7 aA 8.31%
8 Ad 8.26%
9 Af 8.15%
10 7 7.22%
11 Ac 6.24%
12 DA 6.22%
13 _AD 6.18%
14 Dd 6.15%
15 JA 6.13%
16 Je 6.04%
17 Af 6.01%
18 dD 5.61%
19 DE 5.57%
20 Jj 5.45%

? Assuming an average sequence length of 5, the potential maximum number of patterns that could be discovered
is on the order of 8: With 24 labels (a-1, A-L) available, there are 245 possible sequences obtainable, and the number
of feasible substrings in a 5-character sequence amounts to 5 x (5 + 1)/2 = 15. Consequently, the overall count of
detectable patterns from sequences of length 5 sums up to 24° x 15 = 119,439,360.
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6.3. Part C: Leveraging micro patterns for behavior representation

We harnessed the micro-patterns extracted through sequential pattern mining to construct
individual behavior profiles denoted as frequency vectors. These vectors captured the occurrence
rates of each micro-pattern. To ensure uniformity along with comparability, we normalized
frequency vectors, resulting in a cumulative frequency of 1 across the micro-patterns. This
methodology draws inspiration from the seminal work presented in [10], where a similar
approach was employed to discern relevant behaviors. Consistent with this earlier research, we
refer to the discussed profiles as the problem solving genome.

Micro-pattern-based behavior vector’s stability (referred to as the genome) and its ability to
capture enduring characteristics of students, a method proposed in [10] was employed. This
method involved splitting the student sequences into two halves and constructing behavior
vectors from each half. By comparing the resulting half-vectors, it was possible to determine if
the student’s behavior profile exhibited stability. To assess this, the student sequences were split
in two ways: random-split, where sequences were randomized across two splits, and temporal,
where sequences were ordered according to timing and sorted among halves. Behavior vectors
were constructed each and every one of the halves, after which pair-wise gaps were calculated.
Jensen-Shannon (JS) measure, commonly employed for computing distances between frequency
distributions, was used to calculate the distance between the half-vectors.

We utilized the Wilcoxon rank test and compared the distances like self and others. Signifi-
cantly lower distance from self (Mean = 0.3485, SE = 0.0025) was observed in the random-split
scenario (Mean = 0.6586, SE = 0.0010), with a p-value less than 0.0001. Talking about the temporal
cases, distance from self in the split halves (Mean = 0.4249, SE = 0.0022) exceeded that of the
random-split ones, albeit significantly less in quantity (Mean = 0.6534, SE = 0.0010), with the
value of p less than 0.0001. These compelling findings offer robust support for the reliability of
frequency considered micro in its pattern as a representation of students’ behavior when it comes
to tackling problems. Moreover, the behavior profiles derived from this approach showcase a
distinctive capability to accurately depict individual students’ ability to solve problems.

After establishing the stable profiles of student behavior through vector-based representation,
our subsequent objective is to employ the micro-patterns as a means to categorize students
according to their problem-solving styles. The ensuing section provides an elucidation of the
identified behavior groups and their influence on student performance.

7. Building and examining behavior-based groups

7.1. Grouping into clusters based on similar behavior

The behavior vector of micro-pattern frequency was constructed for each student, and the
students were clustered based on these vectors. The behavior vector was built using the students’
distinct abilities on solving problems. The process encompassed the consecutive snapshots
captured during their program development for various problems throughout the course. Five
distinct settings were explored for clustering the students’ behavior, as outlined in table 5. In the
latter four settings, the snapshots were labeled based on concepts, correctness, and the duration
spent on a respective snapshot, while the first setting did not consider time. Furthermore, there
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was variation in the micro patterns utilized in the labeling process. Initially, 45 patterns were
drawn from a 5% threshold applicable to, derived by setting the SPAM’s minsup threshold to 5%.
Subsequently, the settings utilized 245 patterns where a 1% threshold value was set on minsup.

Table 5
Settings of the frequent programming pattern clustering.

No. #Patterns Minsup  Clustering method  #Clusters Time

1 45 5% Hierarchical 2

2 245 1% Hierarchical 2 v
3 245 1% Hierarchical 3 v
4 245 1% Spectral 2 v
5 245 1% Spectral 3 v

7.2. Interpreting discovered clusters

We embark on an in-depth exploration of behavior-based grouping, aiming to provide a more
comprehensive understanding of its nuances. Our focus centers on settings utilizing two clusters
to facilitate a clearer differentiation. After conducting a thorough analysis using both clustering
similarity assessment and manual examination, we identified that the three configurations
with two clusters successfully divided all students into either of two groups. The first group
exhibited a proactive approach, characterized by a gradual progression of building steps. In
contrast, the other group showcased a propensity for code manipulation without improving its
correctness, often struggling through consecutive steps without achieving favorable outcomes.
In the context of the three-cluster settings, we observed a comparable grouping of students,
with an additional cluster capturing mixed behaviors that showed similarities to the other two
clusters in specific subsets of micro-level characteristics. The classification of behaviors into
distinct clusters (refer to table 5, row 4) obtained from the Spectral approach is visually depicted
in figure 3. Carefully calibrated based on the divergence between the two clusters, the vertical
axis of the graph showcases the frequencies of the 20 most prominent micro-patterns within
both of them.

In the figure, at opposite sides of the plot, it illustrates distinct trends of micropattern fre-
quencies. Cluster 1, on the left, has a greater “tinkering" occurrence (Dd, dD, 7§, DE, }j). On
the opposite side, cluster numbered 2 exhibits substantially increased frequency of meticulous
building (Aa, AD, AA_, _AA, AA). Within cluster 1, students frequently partake in a series of
iterative stages aimed at enriching the substantive aspects of their programs. This iterative
process involves dedicating substantial time and effort to the stages such as Dd or dD, demon-
strating their commitment to refining the content and structure of their programs. Moreover,
they demonstrate instances where prolonged periods are spent on increasing program concepts
in one step, followed by subsequent steps that involve a reduction in program concepts (DE).
Another behavior observed in this cluster is investing considerable time in a step to augment
program concepts, yet failing to improve correctness and sometimes regressing to a point where
no tests are successfully passed (77, 7).

In contrast, students in cluster 2 exhibit a significantly lower inclination toward “tinkering"
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Figure 3: Top 20 programming patterns and their ratio of occurrence in each cluster. Patterns are
ordered by absolute difference of ratios between Cluster 1 (tinkerers) and Cluster 2 (movers), and error
bars represents standard error of the mean.

behaviors and instead prioritize large incremental building steps, devoting considerable time to
program development. These students frequently engage in lengthy steps that involve incorpo-
rating additional concepts into the code, resulting in successful enhancement of correctness
or, at the very least, the preservation of existing correctness levels (AD). These building steps
occur more frequently at the beginning of code development (_AA) or even for steps in the
middle (AA, Aa, AD). Stages towards the completion of their code (AA_) are also considered.

Upon conducting a thorough manual examination of the clusters, we observed that the
division based on behavior patterns did not align with differences in students’ performance.
Instead, the clusters appeared to segregate students based on their preferred approach to
problem-solving. These two groups can be mapped as tinkerers and movers [19]. The behavior
of movers is characterized by a gradual addition of concepts to the solution, accompanied by a
simultaneous increase in correctness with each step. Conversely, tinkerers adopt a different
approach to solving programming problems. They initially write code and then proceed to
make subsequent modifications in an attempt to achieve the desired outcome.

8. Validating behavior-based clusters

8.1. Overlaps between clustering approaches

Values in the top right quadrant of the “Groups/cluster label overlaps” rows in table 2 (rows
that show overlaps with simplified groupings) are all < 0.40 (below our ad-hoc threshold).
This means that none of the five behavior-based clustering results align with demographics,
background, or overall course performance. This is the proof that behavior-based clusters are
orthogonal to simpler ways to group students and we consider that as a positive validation.
Overlaps between behavior-based clustering results are all above 0.40, highest when 2 and 3
cluster versions of the same approach are compared (0.70 for B2 vs. B3 and 0.69 for B4 vs. B5).
However, as clustering approaches B1 to B5 could be thought of as a sequence of incremental
improvements, higher overlaps are expected.
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8.2. Validating behavior-based clusters by cross-prediction

The “Prediction diff” section in table 2, specifically the five rows beneath others, provides
insights into the between-cluster model prediction differences. Not a single approach achieved
an ideal score, our analysis indicates that the observed clusters were not markedly different in
terms of their learning approaches. Nevertheless, each clustering method yielded an expected
output, as each approach identified one dominant cluster that outperformed at least one other
cluster in terms of model predictions.

To graphically illustrate some of these results, refer to figure 4, where accuracies of cluster
models cross-prediction are shown for Behavior-based clustering B1. In the given analysis, it is
evident that cluster 1 emerges as the superior model when making predictions on test data from
both clusters. To visually depict the accuracy differences in cross-prediction, figure 5 presents
a graphical representation for Behavior-based clustering B5. Notably, in this case, cluster 2

exhibits higher prediction accuracy compared to cluster 1 across all test data partitions, as does
cluster 3.

Behavior-based clustering B1

0.84 =
3. A i
g 0.82 il
S
< 0.8 ?
0.78 T w |

lpred.1 2pred.1 1lpred.2 2pred.2

Figure 4: Capturing the essence of Behavior-based clustering B1: Unveiling the remarkable variations
in prediction accuracy within student groups across different clusters.

Behavior-based clustering B5

0.86 +
0.84 7'y - _+. +
z TR
e 0.82  + - " I
3 0.8 ] |
< . — \J
< +4 — \
0.78 T 7
0_76 T T T T T T T T 1
— — — (o} o~ ~ m las] m
T ©® ©W ©W ©W © ©W T T
p g g ¢ g 9 g 9
o o a [« a [« a o o
— o~ [as} — o~ m — o~ m

Figure 5: Presenting the divergent model prediction accuracies among student groups across clusters in
Behavior-based clustering B5..
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9. A deeper analysis of cluster differences

9.1. What differences do behavior-based clusters show?

Our investigation into performance prediction using behavior-based clusters yielded compelling
outcomes, indicating that the clusters we uncovered (innovators, adventurers) deviated sig-
nificantly from preconceived performance-based stereotypes. Put simply, the two clusters
we identified failed to exhibit substantial performance disparities, which would have enabled
the formation of stereotypes for predicting students’ performance and facilitating personal-
ized approaches. While the clusters did not effectively classify students into conventional
performance-based categories (weak, strong), we did observe the formation of distinct groups
with distinct and consistent behavioral patterns. Nonetheless, recognizing the prevailing belief
among certain programming instructors that tinkering does not align with effective problem-
solving behavior, we are now compelled to undertake a more profound analysis, focusing
explicitly on performance within our identified pattern-based clusters. In this section, we aim
to thoroughly scrutinize the performance aspects inherent to these clusters.

1. Exploring the inefficiency and lower academic performance of tinkerers.

To gain insights into the contrasting performance characteristics between the two behavior
cohorts, we conducted an in-depth analysis of various performance indicators. These measures
encompassed: 1) the volume of problem attempts undertaken by students, 2) the count of
problems successfully solved by students, 3) the average number of procedural steps employed
to arrive at solutions, 4) average duration devoted to problem-solving endeavors, 5) efficiency,
and 6) overall grade of the completed coursework. The efficiency grade serves as the metric for
effectiveness of course instructions, encompassing students’ performance on solved problems
and the cognitive effort invested in tackling them. As a proxy for mental exertion, we selected
problem-solving time and employed the effectiveness score calculation method as introduced in
[17].

Table 6 shows the relevant metrics capturing student performance in clusters 1 and 2 (tinkerers
and movers, respectively). The Wilcoxon method assessed the performance measure difference
between the two clusters. It reveals significant disparities between the clusters across multiple
aspects. On average, cluster 2 students exhibited a lower number of steps taken to solve problems
(M7 =5.9, M; = 3.4), showcased increased abilities when solving problems (M; = 998.1, M, =
630.0), plus, consequently displayed higher efficiency in problem-solving (M; = -0.3, M, = 0.4).
To summarize, cluster 2 generally surpassed cluster 1 on grades (M; = 2.9, My, = 3.4). It is
crucial to exercise caution when interpreting these results as a definitive indication of cluster
2’s superiority in problem-solving. Regarding the level of problem-solving proficiency, no
significant disparities were found in inter-cluster variations. On average, cluster 2 demonstrated
greater number of problems attempted and successfully solved.

2. Patterns indicate a proclivity towards a range of performance levels, from low to high.

From our observations regarding the clustering arrangements, we can deduce that one particu-
lar group exhibited a constructive thinking approach. This group comprises students in cluster 2,
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Table 6
Performance comparison (Mean, SE) for Clusters 1 (N = 295) and 2 (N = 503) students. Wilcoxon test
used for performance evaluation.

Performance measure ~ Cluster 1 Cluster 2 Wilcoxon score
#Probs. attempted 81.3(1.7) 82.8 (1.3) 73,456
#Solved Probs. 68.1 (1.4) 70.9 (1.0) 68,860
Avg. no. of attempts 5.9 (0.2) 3.4 (0.1) 123,790
Avg. time 998.1 (27.5)  630.0 (16.7) 111,950
Effectiveness score -0.3 (0.1) 0.4 (0.0) 7253
Course grade 2.9 (0.2) 3.4 (0.1) 43,068

:p<.05  :p<.001

who frequently engaged in prolonged contemplation, incorporated additional concepts, and en-
hanced the accuracy of their code (as indicated in figure 3). Cluster 1’s students problem-solving
abilities were comparatively subdued. Unlike cluster 2, they encountered more unsuccessful
steps, introduced concepts without passing tests, or made changes (additions/removals) that
had no bearing on code accuracy (refer to figure 3 and note Dd, dD, DE). We see in cluster
number 1 students who display lower levels of efficiency in their problem-solving endeavors, as
evident from performance metrics such as the effectiveness score and average attempts to solve
problems. Therefore, it is plausible to conclude that weaker students are more likely to be part
of this cluster.

Upon delving deeper into the connection between micro-patterns within each group and
the performance metrics, we unearthed intriguing associations, whereby certain patterns
demonstrated either positive or negative correlations with performance measures®. Notably,
several patterns predominantly indicative of tinkering behavior exhibited negative associations
with problems solved in terms of overall number and the effectiveness in doing so (_jj, %}, ic_,
_J77, j77, 37k, _JIK, FF). Conversely, we discovered that a constructive building pattern (_AAD)
displayed a positive correlation with both aforementioned measures. Furthermore, it became
evident that a pattern could exert varying impacts on different performance metrics. In our
analysis, the bA pattern showcased a positive relationship with the number of problems solved,
while concurrently exhibiting a negative correlation with the effectiveness score.

3. Both clusters encompass a blend of students exhibiting varying levels of proficiency.

The absence of performance-based stereotypes within the clusters of tinkerers and movers can
be attributed to the dispersion of weak and strong students across both groups. To explore the
hypothesis that students with different levels of proficiency might demonstrate similar problem-
solving behaviors, we conducted a comparison between the clustering outcomes of tinkerers and
movers (clustering B4) and the performance-based clustering approaches (Problem Solved and
Percent Correct). Intriguingly, we discovered instances where students with varying proficiency
levels exhibited overlapping patterns in their problem-solving behaviors. The findings revealed

3This analysis employed a generalized linear model to establish the relationship between the performance
measure of interest and the micro-patterns, which exhibited minimal or no discernible correlation.
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minimal convergence between the groups identified by these clustering methods (refer to table 2,
rows 4-5 in column B4, with an overlap of less than 0.30). Based on this compelling evidence, we
can conclude that both students with weaker and stronger performance lie within both clusters
(movers and tinkerers).

Notably, within cluster 1 (tinkerers), a significant portion of students demonstrated commend-
able academic performance despite exhibiting problem-solving behaviors similar to those of
underperforming students. This observation serves to reinforce the notion that behavior-based
clusters encapsulate distinct problem-solving approaches rather than aligning with conventional
categorizations of weak and strong performance groups.

10. Concluding discussion

10.1. There are not even two different student stereotypes

Our objective was to identify a minimum of two student groups, not necessarily encompassing
the entire student sample at our disposal, but distinct enough to indicate varying learning
approaches. This distinction would allow us to ascertain the potential benefits of diverse
adaptations, computer-aided support system configurations, or instructional methodologies
tailored to each group’s specific needs, if such measures were to be implemented.

Similar to the authors in [27] who explored K-12 mathematics, we discovered that there
consistently exists a subset of students from which an effective model of student learning can
be constructed to represent the entire available population. While this finding may appear
inconclusive (or rather recurrent), it holds significant importance. It implies the absence of
stereotypes such as “good students” or “bad students”. Likewise, the concept of “fast learners”
and “slow learners” may not hold true. Instead, we observe students approaching learning in
distinct manners, with these variations being independent of the conventional dimensions we
typically employ to measure learning.

10.2. How should our findings be interpreted

Mining behavior of students in problem-solving activities helped us find individual differences
in how student solved programming problems. Certain students demonstrated a preference
for extended contemplation, incorporating concepts that immediately improved code accuracy
upon implementation. In contrast, other students tended to engage in more tinkering steps,
involving the addition, removal, or modification of existing program code concepts that did not
yield an immediate enhancement in code correctness. Indeed, for some students exhibiting the
latter problem-solving behavior might be a sign of poor performance, but we should have this
in mind that there are also students who have same behavior but are doing very well regarding
their performance. This is an important finding, particularly for MOOCs design, as it points out
that we should not necessarily intervene when students exhibit more tinkering steps. This is
the way some students solve problems, and they can do well with that.

We attempted various simplified behavior-based grouping methods, but they did not yield
noticeable variations in cross-prediction accuracies. In essence, there consistently exists a
specific subset of students that contributes to a model applicable to the entire student population.
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As a result, the feasibility of grouping students for targeted adaptation appears to be limited in
its utility. Students, whether classified by their demographics, overall performance, or approach
to solving programming problems, should not be treated as stereotypes, but rather considered
in the context of a larger or smaller topic of the material, or even on the finer-grained level of a
problem-solving session.

10.3. Potential limitations

We used traditional programming course and programming MOOC course data that come from
the University in Europe. The education set-up in the country under study may diverge from the
global norms. As a result, it is reasonable to consider that the composition of our student sample
might have determined how assortments were made on basis of behaviors and performances.
To ensure the validity and potential reaffirmation of our findings, we intend to pursue future
research endeavors involving a larger and more representative student dataset, enabling us
to reevaluate our analysis. Also, we plan to reduce the program concepts that we used in the
modeling to only crucial ones. This would reduce inaccuracies that were due to noise in data.
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