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Abstract. The development and efficient application of Fog Computing technologies necessitate complex
tasks associated with the management and processing of large data sets, including the creation of low-
level networks that guarantee the functioning of end devices within the Internet of Things (IoT) concept.
This article presents the utilization of graph theory techniques to address these issues. The proposed
graph model enables the determination of fundamental characteristics of systems, networks, and network
devices in Fog Computing, including optimal features and methods to maintain them in a functioning
condition. This work demonstrates how to create and personalize graph displays by adding labels or
highlighting to the graph nodes and edges of pseudo-random task graphs. The task graphs, described and
visualized in Matlab code, represent the computational work to perform and data transfer between tasks,
expressed in Megacycles per second and kilobits/kilobytes of data, respectively. The task graphs can be
applied in both single-user systems, where one mobile device accesses a remote server, and multi-user
systems, where many users access a remote server through a wireless channel. This set can be utilized
by researchers to evaluate cloud/fog/edge computing systems and computational offloading algorithms.

Keywords: graph theory, fog computing, Internet of Things (IoT), task graph model, computational
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1. Introduction

Nowadays, at the same time as the rapid development of industrial and built electronics will
lead to the fact that traditional equipment used in production processes and at home is more
than more provided intellectual functions and objects in the network that requires virtually
continuous data processing, growing and requiring computing power of this equipment. The
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need to control and manage individual mechanisms and machines, as well as the environment,
transport flows, production, business, health and education, security, social processes has led
to the creation of a large number of devices that interact with people, central data messages
and between himself. For their effective functioning, it was necessary to create a global com-
munication system, the quality of the natural state by visiting the Internet, the need to solve
management and control problems to create a network concept focused on connecting devices
and received from the Internet of Things, IoT.

The term Internet of Things was first used in 1999 by Kevin Ashton, head of the Massachusetts
Institute of Technology’s Auto-ID Research Center, who suggested that Procter & Gamble use
radio frequency tags (RFID) on products to improve supply chain management [7]. Later, this
name became commonplace, although its meaning has now expanded significantly.

It should be noted that within the framework of the IoT concept, the basis for the effective
operation of both end devices with intelligent functions and the networks formed by them
is a real-time operation, reliability, and security, which can not always be provided using a
client-server interaction scheme, which is typical of the classic Internet and is based on cloud
technology and computing (Cloud Computing) [11].

The concept of Fog Computing is designed primarily to bring data processing and storage
closer to the devices that generate and use them. A modified concept of cloud technology
applicable to IoT, called Fog Computing (FC), was proposed by Cisco researchers. According to
the concept, the FC architecture is three-tiered. At the lowest level – the earth – are billions of
things, at the top – many cloud data centers that provide resources for applications that require
significant computing power and/or significant amounts of data. And, accordingly, between
them is Fog – tens of thousands of geographically distributed smaller control centers, sufficient
to solve local problems.

As mentioned above, the concept of Fog computing, in contrast to cloud computing, involves
the data processing to the end devices of networks – computers, mobile devices, sensors, and
more. It should be noted that now the term Edge Computing has become widespread, which
in essence is quite close to Fog Computing, as it also involves the implementation of key
operations to collect data processing outside the cloud. However, the key difference between
Fog Computing and Edge Computing is considered to be the degree of convergence of data
processing points to the edge devices of networks. If the concept of Fog involves sending data
generated by end devices for processing and/or storage in local processing centers (Fog Nodes),
then in the concept of Edge Computing the main tasks of data processing are solved directly on
end devices.

Considering the differences between Cloud Computing and Fog Computing, it should be
noted that from the authors’ point of view, despite the differences, the contrast between the
Fog/Edge Computing models and the Cloud Computing model is erroneous and should not be
considered as alternatives but complementary. The basic idea of the Fog Computing concept is
to ensure efficient, reliable, and secure interaction of a huge number of devices with each other,
with local data centers, and with cloud data centers.

Fog Computing is characterized by the use by users of service functions of resources located
on peripheral devices and in the distributed network. The data is located on the client nodes
where they should be processed or nearby. The main method of data collection and transmission
is wireless communication. The advantage of networks built according to the concept of
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Fog Computing over cloud systems is to reduce the latency of the response to the collected
data by processing at the place of collection, and for real-time systems, this is one of the key
factors. Also, in most cases, the security of Fog Computing systems is higher than for Cloud
Computing systems. Another advantage of Fog Computing is the reduction in the amount of
data transmitted to the cloud, which reduces network bandwidth requirements, increases data
processing speed, and reduces decision delays. Thus, the use of Fog Computing allows you to
completely or partially solve some of the most common problems, including:

• large network delays,
• difficulties associated with the mobility of endpoints,
• reliability of communication,
• the high cost of bandwidth;
• unpredictable network congestion,
• large geographical distribution of systems and customers.

OpenFog Consortium, founded in 2015, has proposed a specification of the OpenFog reference
architecture, a universal technology model for projects primarily in the field of the IoT, mobile
networks, and AI applications. The key members of the consortium are Cisco, Intel, ARM, Dell,
Microsoft. According to the proposed model, OpenFog-infrastructure is a set of nodes (Fog
Nodes) based on network smart devices that perform data processing, the specification also
contains descriptions of options for hierarchical node construction, system deployment models,
and examples of possible implementations.

The OpenFog reference architecture is based on the following eight technological principles
(criteria):

• security,
• scalability,
• openness,
• autonomy,
• RAS (reliability, availability, suitability for service);
• adaptability;
• hierarchical principle of construction of input elements;
• programmability.

According to Cisco developers, the concept of Fog Computing is best suited for working with
machine-to-machine (M2M) systems and devices that use a human-machine interface (HMI).
They distinguish three main groups of such devices:

• Data acquisition devices are generated in series by different sensors with a frequency of a
few milliseconds to fractions of a second. Examples are devices of security systems and
control systems of industrial facilities. They are characterized by low latency requirements
for data acquisition and high performance to calculate the required characteristics in
real-time.
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• Systems responsible for data processing, including operating. Here the input data comes
with a frequency of a few seconds to a few minutes. Examples of such systems are devices
for visualization of physical processes, technological industrial systems. The requirements
for the latency of the collected data and their processing are not as high as for the devices
of the first group, but all data are processed in real-time.

• Devices for the collection and processing of historical data, collected at a frequency of
several minutes to several days. Example – visualization and reporting systems.

2. Theoretical background

Yi et al. [20] point to unresolved cloud computing issues such as unreliability, latency, lack of
mobility support, and location awareness. Fog computing can solve these problems by providing
resources and services to end-users at the network boundary, while cloud computing is more
about providing resources distributed on the core network. Fog provides IoT data processing
and storage locally on IoT devices, instead of sending it to the cloud [2].

Case studies by Abbas et al. [1], Satyanarayanan [14], Shi et al. [15], provide a detailed
description, definition, and capabilities of EdgeComputing, from cloud technology unloading to
smart home and city, mobile networks.

Vaquero and Rodero-Merino [18] define Fog, considering a variety of technologies such as
cloud, sensor networks, peer-to-peer networks, network virtualization functions, or configura-
tion management techniques. Mahmud, Kotagiri and Buyya [10] note that Fog computing is
located closer to IoT devices/sensors and expands the capabilities of cloud-based computing,
storage, and networking technologies. Stojmenovic et al. [16] point to Smart Grid technologies,
smart traffic lights, software-defined networks.

Bonomi et al. [3] indicate the main characteristics of Fog: a) low latency and location aware-
ness; b) wide geographical distribution; c) mobility; d) a very large number of nodes; e) the
predominant role of wireless access; f) the strong presence of streaming and real-time programs;
g) heterogeneity. These features make Fog an appropriate platform for several critical IoT
services and applications, namely, automotive, smart grids, smart cities, and wireless sensors
and network devices (WSANs) in general.

The results of studies by Sarkar and Misra [13] show that for the scenario where 25% of
IoT applications will run with low real-time latency, the average energy consumption for Fog
calculations will be 40.48% lower, than in the usual model of cloud computing.

Expanding the concepts of Fog Computing is the driving force behind the introduction of
Industry 4.0. The development of algorithms and optimization methods is complicated by the
complexity of such systems and the lack of real data on Fog systems, which leads to the use of
algorithms that are not adapted to real scenarios. Graph-based system parameters allow you
to scale and design more realistic test scenarios for future optimization attempts, as well as to
determine the features of Fog systems compared to other types of networks [19].

Graph theory is used to construct a load balancing algorithm for Fog network computations
[8] based on a dynamic graph distribution [12] that the Fog Cloud Atomization computing
system can flexibly build a system network, and the dynamic load balancing mechanism can
efficiently configure system resources as well as reduce the consumption of node migration
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caused by system changes.
Some authors propose a Fog network caching scheme based on the Steiner tree, in which Fog

servers, by caching resources, first create a Steiner tree in graphs to minimize the total path
weight (or cost) so that the cost of resource caching with this tree can be minimized [20, 21].

Chen and Zhang [4] propose a hybrid HyFog system for unloading tasks in Fog Computing
based on a three-level graph for efficient distribution of tasks between devices. The problem of
minimizing the total cost of the task is reformulated as the problem of the minimum weight
ratio in the constructed three-level graph, which can be effectively solved using the Blossom
Edmonds algorithm.

Korzun et al. [6] consider two emerging IoT-enabled paradigms: Edge-centric Computing
and Fog Computing. They are elaborating their potential for development of smart applications
with focus on the dependability and using a mobile assistant for e-tourism as a reference
application. They analyze possible concept elements for smart application development and
provide recommendations in respect to the dependability.

Lera, Guerrero and Juiz [9] propose a fog computing simulator for analyzing the design and
deployment of applications through customized and dynamical strategies. They model the rela-
tionships among deployed applications, network connections, and infrastructure characteristics
through complex network theory, enabling the integration of topological measures in dynamic
and customizable strategies, such as the placement of application modules, workload location,
and path routing and scheduling of services.

Szymanski [17] presents describes 300 task graphs which can be used for evaluating mobile
cloud, fog and edge computing systems.The task graphs are organized as 3 sets of 100 graphs.
Each graph in the first set has the same topology, with 𝑁 = 9 tasks and 6 offloadable tasks.
Each graph in the second set has the same topology, with 𝑁 = 29 tasks and 20 offloadable tasks.
Each graph in the third set has the same topology, with 𝑁 = 23 tasks and 19 offloadable tasks.
Users can also change the number of offloadable components per task graph, in which case the
total number of task graphs specified in this paper exceeds 5,000, providing a good basis for the
evaluating cloud computing systems.

3. Research methods

When modeling the operation of both individual elements and the system, designed and/or
built on the concept of fog computing as a whole, for example, to assess efficiency, performance,
bandwidth, performance, equipment reliability, the delay time for certain types of service, data,
software, the system should be presented in the form of several interconnected levels:

• equipment,
• interfaces,
• transport system (network),
• operating systems (OS),
• data,
• services,
• applications.
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Such a representation of the object of modeling allows you to use the apparatus of graph
theory.

Figure 1 in the form of an oriented graph 𝐺 = (𝑍,𝐿) presents a multilevel graph model of
the system built according to the concept of Fog Computing. The set of vertices of the graph
𝑍𝐸𝑞𝑢𝑖𝑝, 𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ..., 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ...; 𝑍𝐼𝑛𝑡𝑒𝑟𝑓 , 𝑍𝐻𝑀𝐼 , ..., 𝑍𝑀2𝑀 , ... .; 𝑍𝑇𝑆 , 𝑍𝑁𝑒𝑡𝐷𝑒𝑣 , ..., 𝑍𝐿, ... ; 𝑍𝑜𝑠,
𝑍𝑜𝑠1, ..., 𝑍𝑜𝑠𝑛, 𝑍𝐷𝑎𝑡𝑎, 𝑍𝑂𝐼 , ..., 𝑍𝐻𝐷, ..., 𝑍𝐵𝐷 , ...; 𝑍𝑆 , 𝑍𝑆1, ..., 𝑍𝑆𝑚; 𝑍𝐴𝑝𝑝, 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 are
tasks that are solved at each specific level.

The set of arcs contains: 𝑋𝑝𝑟 – the set of parameters needed to solve these problems and the
set of information links – 𝐻 . The set of parameters 𝑋𝑝𝑟 consists of 𝐻 𝑖𝑛

𝑝𝑟 – input and 𝐻𝑜𝑢𝑡
𝑝𝑟 –

output parameters.

𝑋𝑝𝑟 = {𝐻 𝑖𝑛
𝑝𝑟 , 𝐻

𝑜𝑢𝑡
𝑝𝑟 }

with 𝐿 = 𝑋𝑝𝑟
⋃︀
𝐻 and 𝑋𝑝𝑟

⋂︀
𝐻 = ∅.

It should be noted that the output parameters of some tasks (vertices) may be input for others.
Information connections are converted into a Boolean matrix 𝑛𝑛:

𝐻 = ‖ℎ𝑔𝑙‖𝑛𝑥𝑛.

The matrix element ℎ𝑔𝑙 characterizes the presence of information connections of problems 𝑔
and 𝑙:

ℎ𝑔𝑙 =

{︃
1 if the tasks are related by parameters,

0 otherwise.

The solution of any problem can be represented as

𝑍𝑖 : {𝑋𝑖𝑛
𝑝𝑟} ⇒ 𝑍𝑜𝑢𝑡

𝑝𝑟 .

It should be noted that there are many mathematical models for solving the problems that
correspond to the vertices of the graph 𝐺 = (𝑍,𝐿), in the future, they are used to estimate
the parameters and characteristics of Fog Computing elements. Each vertex of the graph
corresponds to one or more nodes, and the output parameters of some nodes can be input to
others. Michaela Iorga, Larry Feldman, Robert Barton, Michael J. Martin, Nedim Goren and
Charif Mahmoudi note that Fog nodes are either physical components (e.g., gateways, switches,
routers, servers, etc.) or virtual components (e.g., virtual switches, virtual machines, clouds,
etc.) that are closely related to intelligent endpoints, devices or access networks, and provide
computing resources for these devices [5].

Each parameter for solving problems is characterized by a vector of characteristics of parame-
ters, which includes: units of measurement of the parameter; the vertex in which this parameter
is the source; the vertex in which the parameter is input, the level number, and other individual
characteristics. The units of measurement of parameters are determined by the International
System of Units (SI) and by the semantics of specific modeling tasks. In this case, all parameters
should be divided into two groups: 1) parameters corresponding to the SI system; 2) all other
parameters.
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For the same parameters, the units of measurement may be different; therefore, it is necessary
to perform parameter matching. As mentioned above, the OpenFog reference architecture is
based on the following eight criteria:

𝐾 = {𝐾𝑢
1 , ...,𝐾

𝑢
8 },

where 𝐾 is a compound criterion; 𝑢 is the level number (𝑢 = 1, ..., 7); 𝐾𝑢
𝑖 – criterion of a

specific level, for example, security at the level of services.
This method can be used in this study, because using the graph 𝐺 = (𝑍,𝐿), it is possible

to integrate models for calculating and evaluating various parameters depending on specific
tasks, to carry out multivariate calculations, and to effectively evaluate almost all parameters
and characteristics of Fog Computing elements. The graph model clearly shows the mutual
influence and interrelation of tasks and parameters, and modeling can be started with any task
that corresponds to the top of the graph (one or more).

4. Results

Let us dwell in more detail on the results of modeling the graph of a system designed and/or
built on the concept of Fog Computing (figure 1).

1st level – equipment. The vertices of the graph 𝑍𝐸𝑞𝑢𝑖𝑝, 𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ..., 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ... correspond
to this level. The vertex of 𝑍𝐸𝑞𝑢𝑖𝑝 defines all problems which are solved at this level; vertices of
𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ... – (connecting devices) tasks that are solved at the level of a wide range of devices
connected to the network; vertices 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ... – tasks for devices that allow you to perform
the necessary calculations. An example of the tasks that are solved at this level is the calculation
of the reliability and performance of devices.

2nd level – interfaces. As mentioned above, Fog calculations are best suited for working with
inter-machine interaction systems – M2M, and devices that use a human-machine interface –
HMI. The interface level corresponds to the vertices of the graph 𝑍𝐼𝑛𝑡𝑒𝑟𝑓 , 𝑍𝐻𝑀𝐼 , ..., 𝑍𝑀2𝑀 , ....
The vertex of the 𝑍𝐼𝑛𝑡𝑒𝑟𝑓 describes the tasks specific to this level; vertices 𝑍𝐻𝑀𝐼 , ..., 𝑍𝑀2𝑀 ,
... – define tasks for systems with inter-machine and human-machine interface, respectively.
M2M – machine-machine interaction (Machine-to-Machine, Mobile-to-Machine, Machine-to-
Mobile) – the name of the technology (sum of technologies), which allows data transfer between
different devices, and it can be groups of devices, such as public transport. Work on M2M
is coordinated by the following organizations: the Eclipse Foundation, the Focus Groupon
Machine-to-Machine, a member of the International Telecommunication Union, and the TR-50
M2M Intelligent Devices Engineering Committee.

Types of M2M: stationary M2M, such as process control, payment terminals, meters, etc., and
mobile M2M, for example, for fleet management, where M2M is used as an on-board device
for monitoring, diagnostics, navigation, security, and mobile communications. M2M applica-
tions include access systems, premises security systems, security systems, remote control and
management of equipment, transport and monitoring of moving objects, vending machines,
payment terminals, healthcare, etc. HMI – human-machine interface – a concept that encom-
passes engineering solutions that provide human interaction with controlled objects (machines,
systems, devices).
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Figure 1: Graph model of the system, which is implemented according to the concept of Fog Computing.

The HMI can be a computer, standard software, a simple remote control with a set of LED
indicators, and so on. Modern computers are focused on streaming architecture, the implemen-
tation of intelligent human-machine interface, which provides not only a systematic solution
but also the ability of the machine to logical thinking and self-learning, to associative infor-
mation processing and drawing logical conclusions. The requirements that different users
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impose on the HMI vary widely. The implementation of an intelligent human-machine interface
is associated with the ability to solve problems of recognition and understanding of natural
language, for this, there are recognition systems (language, handwritten texts, images). Creating
a user-friendly and efficient human-machine interface is an urgent task. Also among the tasks
of the interface level can be distinguished, for example, the choice of standard interface buses;
reliability assessment at the interface level, and others.

3rd level – transport system (network). The transport system is used to transmit information
and contains nodes of the Fog infrastructure – switches, routers, etc. The vertex 𝑍𝑇𝑆 of the
graph 𝐺 = (𝑍,𝐿) defines the general tasks characteristic of the 3rd level, and the vertices
𝑍𝑁𝑒𝑡𝐷𝑒𝑣 , ... – describe the tasks that are solved at the level of network devices; vertices 𝑍𝐿, ...,
𝑍𝐿𝑞 , ... – tasks that are solved at the level of communication channels. As the tasks are solved
at this level it is possible to result in the following – a choice of a communication channel;
channel bandwidth estimation; calculation of the delay factor of network equipment; estimation
of message delay and many others.

4th level – operating systems (OS). Here you should consider the presence of different types of
operating systems (UNIX-like OS, Windows, macOS, etc.). The vertex 𝑍𝑜𝑠 of the graph describes
the general tasks characteristic of the OS level.

Vertices 𝑍𝑜𝑠1, ..., 𝑍𝑜𝑠𝑛 are tasks that are solved for each specific operating system, for example:

• calculation of the coefficient of relative losses of OS performance for a multiprocessor
system,

• determining the average processing time of the OS request,
• estimation of the average time spent on access to external memory and analysis of the

intensity of OS requests to external memory devices,
• assessment of the reaction time of the OS in solving specific problems,
• an estimate of the average time required to transmit the OS request,
• estimate the time of access to RAM,
• optimization of the core structure of open OS by the criterion of information security,
• estimation of time of detection of errors in processes,
• calculation of the probability of skipping the controlled signal (quantitative characteristics

for the tasks of monitoring the integrity of OS files) and many others.

5th level – data. The vertices 𝑍𝐷𝑎𝑡𝑎, 𝑍𝑂𝐼 , ...., 𝑍𝐻𝐷, ..., 𝑍𝐵𝐷 , ... of the graph 𝐺 = (𝑍,𝐿)
correspond to this level. The 𝑍𝐷𝑎𝑡𝑎 vertex describes general tasks, 𝑍𝑂𝐼 , ...., 𝑍𝐻𝐷, ..., 𝑍𝐵𝐷 ,
... vertices – tasks specific to operational information (real-time analysis), historical data
(transaction analysis), and long-term storage (BigData analysis).

Examples of tasks to be solved at this level:

• prognostic calculation of the speed of new data generation,
• optimization of file placement and processing of requests to the database,
• estimation of data volume,
• data compression,
• distributed calculations when planning requests to the database,
• assessment of the integrity of information at the level of links and other tasks.
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6th level – services. These can be various services, such as online services (like Uber),
streaming services (like Netflix, Amazon Prime, Hulu, and Crunchyroll), etc.

The level of services corresponds to the vertices 𝑍𝑆 , 𝑍𝑆1, ..., 𝑍𝑆𝑚 graph model. Vertex 𝑍𝑆

defines general tasks for service level, vertices 𝑍𝑆1, ..., 𝑍𝑆𝑚 – tasks for different types of service.
Examples of tasks:

• calculation of productivity for the 6th level,
• assessment of service quality in virtual VPN channels,
• optimization of system services by network resources,
• assessment of the security of transmission of confidential information in broadcast com-

munication channels,
• maximum support for different types of 6th level traffic, etc.

7th level – applications. Applications are research software, computer-aided design systems,
games, applications for artists, geographically distributed applications for pipeline monitoring,
smart devices in the car, SmartGrid, traffic light control systems, etc.

The vertices 𝑍𝐴𝑝𝑝, 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 of the graph 𝐺 = (𝑍,𝐿) correspond to this level. Vertex
𝑍𝐴𝑝𝑝 describes the general tasks of the application level, the vertices of 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 – tasks
for different types of applications. These can be applications installed on computers, tablets,
smartphones of users.

Some examples of tasks:

• calculation of maximum productivity for the 7th level,
• distribution of application tasks between users according to the criterion of weighted

average route length,
• prognostic estimate of the conditional average service time of the application required to

perform the task lasting in 𝑛𝑡 period,
• estimation of the average time of the decision of applied problems,
• calculation of exchange time with external memory in the process of solving applied

corporate tasks,
• prognostic calculation of the time required for data processing in the application system,
• calculation of the average service time of the application for algorithms of non-priority

service disciplines,
• scalability for the 7th level.

The main properties of the multilevel graph model of Fog Computing system are:

1. integration – the ability to solve individual (partial) problems depending on the specific
situation,

2. universality,
3. adequacy,
4. accuracy,
5. efficiency,
6. property of development – the model is created and functions taking into account addi-

tions, improvements, and updates.
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The requirements of a high degree of universality, accuracy, adequacy on the one hand, and
its high efficiency, on the other hand, are contradictory.

In the process of analyzing the graph model of the system, which is implemented by the
concept of Fog Computing, the graph 𝐺 = (𝑍,𝐿) is decomposed into typical subgraphs (the
necessary subgraphs are allocated to save time and computing resources), the parameters of the
corresponding vertices are determined by set of connections between vertices (tasks). Then there
is a selection of appropriate models (formulas) to calculate the necessary parameters for solving
specific problems. Next, you need to analyze the entire graph model. Using graph 𝐺 = (𝑍,𝐿) it
is possible to integrate models for calculation and estimation of various parameters depending
on concrete tasks, to carry out various calculations, to estimate practically all parameters and
characteristics of Fog Computing system elements. The graph model clearly shows the mutual
influence and relationship of tasks and parameters, and modeling can begin with any problem
that corresponds to the vertex of the graph (one or more).

Fog Computing network simulations were performed in Matlab. Since the 2015 release,
Matlab has been able to work with graphs using the 𝐺 = 𝑔𝑟𝑎𝑝ℎ() function. After you create
a graph that simulates a network, you can get information about the graph by using object
functions to perform object queries. For example, you can add or remove nodes or edges, define
the shortest path between two nodes, or find a specific graph node:

G = graph([1 1], [2 3]);
e = G.Edges
G = addedge(G,2,3)
G = addnode(G,4)
plot(G)

The next step in describing the relationships between objects using graphs is to give the edges
certain symbolic values, qualitative characteristics, called weights. In the simplest cases, this
may be the ordinal numbering of the edges, which is checked by the order of their consideration
(priority or hierarchy). Rib weight can mean length (message paths), bandwidth (communication
lines), load. Weight can be attributed not only to the ribs but also to the vertices. For example,
the vertices that correspond to the Fog nodes of the network can characterize the number,
bandwidth, and so on. Next, a graph is constructed, indicating the weight of the edges and
making the width of the edges proportional to their weight (figure 2).

We used a set of pseudo-random task graphs which can be used for evaluating Mobile Cloud,
Fog and Edge Computing systems. The pseudo-random task graphs are based upon graphs that
have previously developed by Ted H. Szymanski [17]. Researchers can download these 300 task
graphs and analyse their own configurations of mobile cloud, fog and edge computing systems
with different mobile device parameters and cloud/fog/edge server parameters, but the code
does not provide the ability to visualize graphs and properties of nodes and edges.

For example, the first set of graphs is based upon a task graph presented in [17]. Szymanski
[17] provided the 3 task graphs shown in figure 3, and it provided the optimal energy for each
graph (under certain assumptions). In figure 3, the task graphs consists of 9 tasks and 10 edges.
Tasks 1, 6 and 9 must execute locally, and the remaining tasks can execute locally or remotely.
The task complexities are expressed in Mega-cycles per task, and the edges are annotated with
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Figure 2: Graph with the width of the edges, which is proportional to their weight.

the data size expressed in kilobits. The task graph in Fig. 3 contains only in one variable, where
the complexity of task 8 changes from 3 to 20 Mega-cycles.

Graph plots are the primary way to visualize graphs and networks created using the graph
and digraph functions. After you create a GraphPlot object, you can modify aspects of the plot
by changing its property values. This is particularly useful for modifying the display of the
graph nodes or edges. GraphPlot properties control the appearance and behavior of plotted
graphs. By changing property values, you can modify aspects of the graph display. Use dot
notation to refer to a particular object and property. Let’s plot a graph by marking the edges
with their weights and making the widths of the edges proportional to their weights. Use a
scaled version of the edge weights to define the width of each edge so that the widest line has a
width of 5. This example shows how to plot graphs:

EDGE_src(1,1:10)=[1,1,2,2,3,4,5,6,7,8,];
EDGE_dst(1,1:10)=[2,3,4,5,6,8,7,7,8,9,];
EDGE_bits(1,1:10)=[200,660,780,590,710,80,270,620,100,500,]
G=graph(EDGE_src,EDGE_dst,EDGE_bits)

G =
graph with properties:
Edges: [10x2 table]
Nodes: [9x0 table]
>> LWidths = 5*G.Edges.Weight/max(G.Edges.Weight);
plot(G,’EdgeLabel’,G.Edges.Weight,’LineWidth’,LWidths)

The second task graph is an extended version of the previous task graph, and the seed graph
is shown in figure 3. Three instances of the task graph from set 1 (in figure 2) are placed in
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Figure 3: Three task graphs each with N = 9 nodes and 6 offloadable tasks. Tasks 1,6 and 9 execute
locally. Edge weights are in Kilobits.

parallel, between the entry node 1 and exit node 29. The seed graph has 29 nodes and 36 edges.
Nodes 1, 29 and 7 other randomly selected nodes execute locally. Each task graph in set 2 thus
has 20 offloadable tasks. This example shows how to plot graphs:

>>EDGE_src(1,13:24)=[1,11,11,12,12,13,14,15,16,17,18,19,];
EDGE_dst(1,13:24)=[11,12,13,14,15,16,18,17,17,18,19,29,];
EDGE_bits(1,25:36)=[200,200,660,780,590,710,80,270,620,100,500,300,];
G=graph(EDGE_src,EDGE_dst,EDGE_bits)

G=
Graph with properties:
Edges: [36x2table]
Nodes: [29x0table]
>>LWidths=5*G.Edges.Weight/max(G.Edges.Weight);
plot(G,’EdgeLabel’,G.Edges.Weight,’LineWidth’,LWidths)

The first task graph in set 2 is identical to the one shown in figure 4.
The practical application of the model can, for example, help mobile devices overcome

resource constraints by unloading computing tasks on cloud servers. The task of the cloud is to
minimize the time of data transfer and execution of tasks to the user, whose location changes
due to the mobility and power consumption of the mobile device.
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Figure 4: Task graph with N = 29 nodes and 20 offloadable tasks based upon previous figure.

Ensuring satisfactory computational performance is particularly difficult in Fog Computing.
The graph model of calculations will allow bringing effectively computing power Fog to the
mobile user. The graph model consists of remote cloud nodes and local cloud nodes that are
connected to the wireless access infrastructure. Evaluating the effectiveness of our method
using experimental modeling in Matlab shows good results, which show that this method allows
you to calculate the ability to reduce task execution time and power consumption of mobile
devices.

5. Conclusions

The developed graph model can be a very versatile tool for optimizing existing networks and
for implementing new systems and networks created by the concept of Fog Computing, and,
above all, focused on the IoT. The IoT and Fog computing is just entering everyday life, and
the model provides the ability to calculate, perform a prognostic assessment, optimize the
necessary characteristics of the entire system and individual elements, identify bottlenecks and
redundancy at the design stage taking into account OpenFog reference architecture, criteria
(technological principles) and types of data processing systems. The proposed graph model can
provide the ability to determine the basic properties of systems, networks, and network devices
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within the concept of Fog Computing, the optimal characteristics, and ways to maintain them in
working condition. A promising task is to create an algorithm for calculating the shortest path
between nodes when dynamically changing the weight of the edges of the graph (for example,
when changing the location of a mobile device) to solve practical problems of unloading mobile
resources.

This paper shows how to plot graphs, and then customize the display to add labels or
highlighting to the graph nodes and edges of pseudo-random task graphs which can be used
for evaluating Mobile Cloud, Fog and Edge computing systems. The graphs are described and
visualized in Matlab code.

We plan to develop a set of use-case scenarios that we analyze to determine the graph based
parameters of the system that allows us to scale and generate a more realistic testing scenario
for future optimization attempts as well as determine the nature of fog systems in comparison
to other networks types.
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