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Abstract. The growth of Internet of Things (IoT) gadgets has ushered in a new era of connectedness and
convenience, but it has also sparked worries about security flaws. Long Short-Term Memory (LSTM)
networks are used in this research’s use of intrusion detection as a novel strategy to strengthen IoT
security. The proposed LSTM-based model excels in detecting both known and evolving cyber-attack
patterns with an accuracy rate of 98.75% and an F1 score of 98.59% in extensive experimental evaluations
using the vast CIC-IoT2023 dataset, representing a varied array of IoT network traffic scenarios. This
research contributes significantly to IoT security while addressing the urgent need for adaptable intrusion
detection systems to defend against changing cyber threats. It is an important step toward ensuring IoT
technology’s long-term development and dependability in a world that is becoming more interconnected.
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1. Introduction

Since the last two centuries, the growth rate in human development has been accelerating due
to the use of various technologies. The exponentially growing power of computers is one of the
most promising technologies. The number of connections and networks with various devices
like desktops, laptops, smartphones, PDAs, etc., is increasing and will significantly expand.
Besides, it is expanding its reach as more linked devices are spread across cities to create smarter
systems. These can reduce the need for human work and make human life more intelligent [19].
The IoT is the term used to describe how different entities of an object will communicate with
one another [4]. IoT has experienced remarkable expansion, necessitating appropriate security
and privacy rules to guard against system vulnerabilities or threats. IoT devices are vulnerable
to cyberattacks because they are numerous, heterogeneous, require limited computing power,
and usually operate on the edge of computer networks [2]. According to Pajouh et al. [14], IoT
devices transmit data over wireless media, so they are a simpler target for attacks. Also, IoT
device connectivity opens new access ports for hackers, offering security and privacy issues.

Attacks on IoT systems spread across a much wider region and have disastrous repercussions
on IoT sites, in contrast to regular transmission attacks on local networks, which are restricted
to nodes near a small local domain. According to Illing [10], the attacks on the IoT have
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greatly grown and sophisticated. A secure IoT network is necessary for combating cybercrime.
Furthermore, a few other crucial issues in the IIoT (Industrial Internet of Things) include stability,
scalability, and power consumption. Conventional security measures are not always appropriate
in this situation. The security measures that are currently in place are made vulnerable by IoT
devices. IoT cyberattacks typically take the form of brute force attacks, physical interference,
cloud-related problems, botnets, and man-in-the middle attacks. Due to the possibility of targeted
assaults using personal data from linked devices, data and identity theft are potentially serious
issues. Therefore, the primary goal of this study is to concentrate on the numerous security
assaults that may be classified according to the IoT-related objects of attack. A handful of these
assaults are equally crucial in an IIoT setting. Researchers, practitioners, and businesspeople in
the industry would be able to determine which assaults are pertinent to their application domain
with this object-based classification of attacks [19]. These cutting-edge electronic devices have
made enormous strides, but because they have recently been the subject of cyberattacks, they
have also brought forth brand-new issues.

On the other hand, deep learning (DL) approaches are useful for identifying DDoS attacks
because of their ability to classify the data and extract features from datasets. A system for
detection that can cope with data unavailability is required in the modern environment. Labels
for legitimate traffic are commonly available, whereas labels for fraudulent traffic are less
frequent [21]. Long Short-Term Memory Networks (LSTM)- simply explained! [12], What are
Recurrent Neural Networks? [22] mentioned that recurrent neural networks (RNNs) have a
variant called LSTM models used to find patterns in data sequences. To create predictions, RNNs
can use the context and location of a sequence. Regular RNNs, on the other hand, only have
short-term memory and have trouble with longer sequences. LSTM models address this problem
by including both long-term and short-term memory. According to Dolphin [5], LSTM networks
were created to address the recurrent neural networks’ long-term reliance issue. LSTMs have
feedback connections, which, in contrast to conventional feedforward neural networks, enable
them to handle data sequences while preserving knowledge about prior data points. This makes
them especially useful for processing time series, text, and speech data. The ability of LSTM
networks to efficiently capture long-term relationships in the data is the first advantage [5].
This capability is essential for identifying complicated assault patterns that may include several
time steps. In IoT contexts, where assaults can be subtle and develop over time, this is extremely
crucial. LSTM networks are flexible enough to accommodate the dynamic nature of IoT data
since they can accept variable-length sequences [1]. This makes it possible to detect assaults
regardless of how long the data sequence is being analyzed. Therefore, an LSTM-based model
has been proposed in this research study to identify cyber-attacks/threats in IoT and create the
model CIC-IoT2023. The dataset is used as a sample.

The rest of the article is structured as follows: section 2 mentions some existing works related
to this study, section 3 describes the methods and materials used in this study, section 4 outlines
the results and findings of this research work, and finally, section 5 concludes the article with
some concluding remarks.
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2. Related works

The central emphasis of this research is on IoT security, so it is acknowledged that broader
cybersecurity strategies may provide insightful perspectives and possible relevance to IoT
environments. For example, methodologies such as anomaly detection and network behaviour
analysis, which have been thoroughly investigated in conventional cybersecurity fields, could
be modified to bolster security frameworks for the IoT. The rationale for focusing on literature
specific to the IoT arises from IoT devices’ distinctive attributes and limitations, including
restricted computational capabilities and a wide range of communication protocols. These
factors require customized security measures. Nevertheless, forthcoming versions of this study
will endeavour to narrow down this disparity by integrating a comparative examination of
conventional cybersecurity techniques and their applicability to the IoT environments, utilizing
seminal contributions from the discipline [1, 2]. Adopting a holistic approach will guarantee a
thorough comprehension of the cybersecurity environment and implications for the perpetually
changing IoT ecosystem.

De La Torre Parra et al. [3] claim that DDoS-based flooding attacks utilize ICMP, DNS protocol
packets, TCP, and UDP to sever communications from registered users at the network/transport
level. DDoS flooding attacks target the application layer of the target server and seek to exhaust
its storage capacity, disk/database, I/O bandwidth, and ports [18]. Cyber attackers frequently
target IoT devices with limited resources because they are easy targets. Additionally, malevolent
IoT objects can take part in more significant attacks. Hence, according to Sahu et al. [18],
the applied CNN approach based on the dataset consists of CC, FileDownload, HeartBeat,
PartofHorizontalPortScan, Torii, Okiru, Mirai, DDoS, and Benign, and the suggested model has
a 96% F-Measure for detecting malicious network traffic. Once identified, The traffic can be
further analyzed and identified using the CNN-based sub-classification network.

According to Al-Garadi et al. [1], monitoring IoT devices can effectively provide a defence
against new or zero-day threats (as demonstrated in figure 1). DL and ML (Machine Learning) are
effective techniques for data exploration to comprehend “normal” and “abnormal” behaviours
concerning how IoT gadgets and parts interact. Each IoT system component’s input data
can be collected and evaluated to identify common patterns of interaction, enabling the early
identification of malicious conduct. Additionally, because ML/DL approaches may learn from
prior examples to intelligently forecast impending unknown attacks, they may be essential for
predicting upcoming assaults, typically variants of earlier attempts. To be effective and secure,
IoT systems must advance beyond enabling safe interaction among gadgets to security-based
expertise supported by DL/ML approaches.

Bi-directional LSTM, a variation on the RNN model, was presented as an IoT attack detection
mechanism by Roy and Cheung [17]. The model offers 95% accuracy. However, the model
is trained using a single dataset and 5451 test samples. In addition, it does not provide any
comparisons to other modern models. RNNs have been further investigated by HaddadPajouh
et al. [7] to detect IoT malware. On 32-bit ARM-based processors, they gathered malware
samples. The OpCodes were used to generate their dataset, and three different iterations of
the LSTM model were examined [6, 8]. They trained their model with 281 malicious and 270
benign programs, which had a 98% accuracy rate. The dataset is small and mimicked, as can
be seen, and hence, the model needs to be evaluated using the large new datasets that are
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Figure 1: Illustration of the potential role of ML/DL in IoT security [1].

accessible. Tran et al. [20] trained and tested the proposed DL method to create an effective
DL model using a real-time dataset taken by an intelligent CNC machine in different cutting
process scenarios. A bogus dataset is randomly added to the real-time dataset of the smart CNC
machine to represent a cyber-attack, and it was discovered that the linear SVM classifier, which
has an accuracy rate for classification of 93.33%, makes the accuracy possible. By using nearest
neighbours using a count of three, the KNN structure increases the precision of classification
to 98.3%. Incorporating a signal-hidden layer of 10 neurons into the ANN model can raise the
classification accuracy to 98.6%. On the other hand, the enhanced proposed deep neural network
(DNN) performs superiorly to other conventional machine learning approaches in classifying
various milling process states with 99.47% accuracy. This demonstrates how the deep learning
network can automatically extract representative features from the dataset after learning the
pattern. The best features inside the dataset had to be designed and chosen using deep expertise
and signal processing skills for classical feature learning.

Ibitoye, Shafiq and Matrawy [9] utilize the BoT-IoT dataset given by the Cyber Range Lab
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of the UNSW Canberra Cyber Center. A scaled-down version of roughly 3.6 million records
from the dataset, which includes over 72 million records of network activity in a simulated IoT
environment, was used for the study [10], and the researchers evaluated the effect of adversarial
samples on an Intrusion Detection System (IDS) built on deep learning in IoT networks. The
IDS initially had a high accuracy of 95.1%. However, its accuracy drastically decreased to 24%,
18%, and 31%, respectively, when tested with adversarial samples made using FGSM, BIM,
and PGD approaches. They then compared the performance of two IDS models, the FNN
(Feedforward Neural Network) and the SNN (Self-normalizing Neural Network). Across a range
of performance criteria, such as precision, recall, F1-score, and multiclassification metrics like
Copen Cappa Score and MC Coefficient, the FNN IDS consistently beat the SNN IDS.

3. Methods and materials

The methods and materials used in this study are briefly discussed in this section. The model
architecture is defined, and a set of evaluation criteria for evaluating the model is also presented.
Furthermore, a brief introduction of the dataset used in this study is given.

3.1. Model architecture and evaluation metrics

This subsection discusses the deep learning model’s structure and the suggested model’s mathe-
matical foundations.

According to Ingolfsson [11], the LSTM’s structure has evolved through time, and the most
prevalent architecture will be described here. An LSTM unit comprises a cell, and three gates
within the cell regulate the information flow and state of the LSTM cell. An input gate, an
output gate, and a forget gate comprise the trio of gates. Then, the LSTM chains these cells
together, each LSTM cell acting as a memory module.

Figure 2: LSTM cell architecture [11].
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Here’s the LSTM cell architecture. It stands for input time step, 𝑋𝑡 for output, ℎ𝑡 for output,
𝐶𝑡 for cell state, 𝑓𝑡 for forget gate, 𝑖𝑡 for input, 𝑜𝑡 for output, and 𝑡 for internal cell state.
Operations are pointwise inside the light red circle. In figure 2, the three gates—forget, input,
and output—are denoted by the letters 𝑓𝑡, 𝑖𝑡, and 𝑂𝑡, respectively. The gates are based on
straightforward intuition:

• The forget gate instructs the cell which information from its internal state to “forget” or
discard.

• The cell is instructed by the input gate, which new information should be stored in the
internal cell state.

• The cell then emits what is known as the output gate, a filtered representation of the
internal state of the cell.

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓 ) (1)

𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (2)

𝑂𝑡 = 𝜎 (𝑊𝑂 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑂) (3)

𝐶̂𝑡 = tanh (𝑊𝐶 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝐶) (4)

Then, the internal cell state is computed as

𝐶𝑡 = 𝑖𝑡 · 𝐶̂𝑡 + 𝑓𝑡 · 𝐶𝑡−1 (5)

The final output from the cell, or ℎ𝑡, is then filtered with the internal cell state as

ℎ𝑡 = 𝑜𝑡 · tanh(𝐶𝑡) (6)

Weights and biases are coupled to each gate, just like neural networks. To enable the LSTM
cell to learn, these weight matrices are combined with gradient-based optimization. In the
equations above, weight matrices and biases are denoted by 𝑊𝑓 , 𝑏𝑓 , 𝑊𝑖, 𝑏𝑖, 𝑊𝑜, 𝑏𝑜, and 𝑊𝐶 , 𝑏𝑐,
respectively. The RNN/LSTM network may preserve data from earlier time steps and create
time-series predictions thanks to the chaining of these cells, as seen in figure 3. The network
can solve the vanishing gradient issue using the LSTM cell topology. Older RNN designs were
unable to make excellent time-series predictions because of this.

The following valuation metrics are used for assessing the model of this study for detecting
cyber-attacks in IoT using the CIC-IoT2023 Dataset this study.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9)

𝐹1− 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

2
(10)
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Figure 3: Standard LSTM model [11].

Rectified Linear Unit, or ReLU, is a popular activation function in neural networks. It generates
nonlinearity by producing the input value when it is positive or zero and 0 otherwise. ReLU
is a common option for DL models since it is computationally effective and helps solve the
vanishing gradient issue [16]. Deep networks with ReLUs can be optimized more quickly than
deep networks with sigmoid or tanh units because gradients can flow when the input to the
ReLU function is positive. ReLU has emerged as the deep learning community’s go-to activation
function due to its ease of use and potency. The LSTM layer is activated using the “relu”
activation function. For multi-class classification problems, softmax is a common activation
function used in the output layer of neural networks. It converts a vector of real numbers into a
probability distribution, ensuring that the output vector’s values add up to 1. Each component
of the output vector denotes the estimated likelihood that the input belongs to a particular class.
Softmax is essential for allocating probability to several classes and identifying the predicted
class in multi-class classification issues. Qin, Kim and Gedeon [15] mentioned that it is common
practice to train neural network classifiers using the softmax and cross-entropy combination. It
calculates the cross-entropy between the neural network’s output and the ground truth label 𝑦.
Then, the network’s parameters are changed using backpropagation to lessen the cross-entropy.
The network’s goal in modelling the relationship between input 𝑥 and label 𝑦 via this loss
function, i.e., softmax with cross-entropy, is still unclear, even if it makes sense to lower the
cross-entropy between labels and projected probabilities. In the output layer of the LSTM model,
the “softmax” activation function has been used.

This study uses a batch training method with a batch size of 1000 to train and test the LSTM
model over a sequence of 50 epochs. During the training process, batches of training data made
up of input features and associated target labels are fed to the model to update its parameters
repeatedly. A progress bar shows the current epoch and tracks the training loss using the
‘train_on_batch’ method during each epoch to visualize the training progress. After that, each
epoch is followed by an evaluation phase, during which the evaluation dataset is partitioned
into batches, and the model’s performance is evaluated using the ‘test_on_batch’ method. This
method guarantees effective computing and offers insightful information about the dynamics of
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the model’s learning. The trained LSTM model was reviewed thoroughly during the research’s
evaluation phase to determine how well it performed at classifying data. It is possible to
understand the model’s capabilities comprehensively by using various common evaluation
criteria, such as accuracy, F1 score, recall, and precision. The test dataset’s predictions from
the model produced class probabilities that were stored in the variable y_pred. Then, these
probabilities are divided into predicted classes, represented by y_pred_classes, by choosing the
class with the highest likelihood for each data point. In parallel, the test dataset’s true class
labels were retrieved and saved in the variable y_true.

3.2. Dataset overview

The dataset used in this study is a very recent dataset called the CIC IoT Dataset 2023, which
was created to support the creation of security analytics software for the IoT environment [13].
It consists of 33 assaults carried out over 105 IoT devices, divided into seven categories: DDoS,
Denial of Service (DoS), Recon, Web-based, Brute Force, Spoofing, and Mirai. These assaults are
carried out by IoT devices that are maliciously aimed at other IoT devices.

Figure 4 demonstrates a wide variety of IoT cyberattacks, along with a corresponding number
of rows in the dataset, pose a threat to the availability and integrity of computer systems and
networks in cybersecurity. A variety of strategies, including flooding assaults like UDP and
ICMP Floods and fragmentation-based attacks, are included in DDoS attacks. DoS attacks cause
service disruptions by flooding a single source with traffic. Web-based attacks use techniques
like SQL Injection and XSS to target web applications. Through numerous tests, brute force
attacks try to acquire unauthorized access. Attacks that spoof entities or change network traffic
are known as spoofing. Finally, Mirai attacks use strategies like GREIP Flood and UDPPlain
attacks, which mostly target IoT devices. It also presents a thorough overview of network
assaults, their corresponding frequencies shown by the number of rows, and their classification
into more general attack types. To gauge the gravity of these threats, the row counts represent
the frequency of each distinct assault type within the dataset.

A thorough and cautiously arranged set of features from network traffic data is presented in
table 1, providing a detailed look at the traits and behaviours of packets inside a network. The
“Timestamp” gives each packet’s specific recording time. “Flow Duration” provides information
on how long a packet has been flowing, and “Protocol Type” classifies packets according to
their network protocols, which include well-known ones like IP, UDP, and TCP. Indicators
for other application layer protocols, including “HTTP”, “HTTPS”, “DNS” and others, are also
included, making it possible to spot particular application-level behaviour in network traffic.
Data throughput is provided, as well as the packet transmission rate under “Rate”. The counts
of several flags, including “FIN”, “SYN”, “RST”, “PSH”, “ACK”, “ECE”, and “CWR”, provide
information on particular packet-level interactions and any anomalies. To understand how
the lengths of incoming and outgoing packets connect, statistical metrics like “Covariance”
and “Variance Ratio” evaluate the variability in packet lengths. “Weight” measures the sum
of the incoming and departing packet counts, providing a comprehensive picture of traffic
patterns. Network specialists can learn important details about the network’s performance and
security posture thanks to additional elements like “Magnitude”, “Radius”, “Standard Deviation”,
“Packet Length”, “Inter-Arrival Time”, and “Packet Count” that provide depth to the research.
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Figure 4: Dataset overview.

For network analysts and security professionals, this set of features is a valuable resource for
network traffic analysis, anomaly identification, and optimization tasks.

Table 1
Features extracted from the network traffic [13].

Feature Description
Timestamp Time when the packet was recorded
Flow Duration Duration of the packet’s flow
Header Length Length of the packet’s header
Protocol Type Type of protocol (e.g., IP, UDP, TCP)
Time-to-Live (TTL) Time-to-Live value of the packet
HTTP Indicates if the application layer protocol is HTTP
HTTPS Indicates if the application layer protocol is HTTPS
DNS Indicates if the application layer protocol is DNS
Telnet Indicates if the application layer protocol is Telnet

Continued on next page
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Table 1 – continued from previous page
Feature Description

SMTP Indicates if the application layer protocol is SMTP
SSH Indicates if the application layer protocol is SSH
IRC Indicates if the application layer protocol is IRC
TCP Indicates if the transport layer protocol is TCP
UDP Indicates if the transport layer protocol is UDP
DHCP Indicates if the application layer protocol is DHCP
ARP Indicates if the link layer protocol is ARP
ICMP Indicates if the network layer protocol is ICMP
IP Indicates if the network layer protocol is IP
LLC Indicates if the link layer protocol is LLC
Total Packet Length Summation of packet lengths in the flow
Min Packet Length Minimum packet length in the flow
Max Packet Length Maximum packet length in the flow
Average Packet Length Average packet length in the flow
Packet Count Number of packets in the flow
Rate Packet transmission rate in the flow
Outbound Rate (Srate) Outbound packet transmission rate in the flow
Inbound Rate (Drate) Inbound packet transmission rate in the flow
FIN Flag Count Count of packets with FIN flag set in the flow
SYN Flag Count Count of packets with SYN flag set in the flow
RST Flag Count Count of packets with RST flag set in the flow
PSH Flag Count Count of packets with PSH flag set in the flow
ACK Flag Count Count of packets with ACK flag set in the flow
ECE Flag Count Count of packets with ECE flag set in the flow
CWR Flag Count Count of packets with CWR flag set in the flow
CK Packet Count Number of packets with ACK flag set in the flow
SYN Packet Count Number of packets with SYN flag set in the flow
FIN Packet Count Number of packets with FIN flag set in the flow
URG Packet Count Number of packets with URG flag set in the flow
RST Packet Count Number of packets with RST flag set in the flow
Covariance Covariance of the lengths of incoming and outgoing packets
Variance Ratio Variance of the lengths of incoming packets divided by variance of the

lengths of outgoing packets
Weight Number of incoming packets multiplied by the number of outgoing

packets
Magnitude Average of the lengths of incoming and outgoing packets in the flow
Radius Variance of the lengths of incoming and outgoing packets in the flow
Standard Deviation Standard deviation of packet length in the flow
Packet Length Length of the packet
Inter-Arrival Time The time difference with the previous packet
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4. Results and findings

The datasets were arranged alphabetically and divided into training and test sets, with the top
70% of the datasets serving as training sets to allow for reliable experimentation and evaluation of
the LSTM model’s effectiveness on various data subsets. The research established a thorough set
of column names for feature extraction and labelling inside the datasets. These columns included
information about many aspects of network traffic, such as flow time, protocol type, flag counts,
and details about protocols like HTTP, HTTPS, DNS, etc. The ‘label’ column was set aside for
class labels to make supervised learning tasks easier. During the data preprocessing phase,
several crucial actions were carried out to prepare the dataset for the LSTM model’s training
and testing. To enable subsequent processing, the raw data, which consisted of sequences
and the labels that went with them, was originally transformed into NumPy arrays. Then,
standardization was used to ensure that the characteristics had a mean of 0 and a standard
deviation of 1, improving the model’s performance. After that, label encoding was used to
transform categorical labels into numerical values so that machine learning methods could be
used. The training and testing datasets were subsampled using a predefined data fraction, where
a fraction of 0.1 indicated the consumption of 10% of the data for managing the computing
needs and speeding up experimentation. These preprocessing methods cleared the way for
efficient LSTM model training and evaluation by ensuring the data were formatted and scaled
correctly for the best model performance.

A thorough investigation of the LSTM model’s performance throughout 50 epochs throughout
the training and evaluation phases has been performed. A steady decline is observed in the
model’s loss during training, with both the training and evaluation losses declining. This shows
that the model successfully discovered the underlying relationships and patterns in the data.
The weights and biases of the model were iteratively updated during the training process to
reduce the loss function and finally adjust the model’s parameters. Exceptional results are
achieved in the LSTM model’s final evaluation.

To evaluate the effectiveness of the LSTM-based intrusion detection model, a confusion matrix
(as shown in figure 5) is used to thoroughly analyse the classification outcomes, enabling us to
assess the model’s precision and misclassifications. The genuine class labels are represented by
each row and each column represents the anticipated class labels in the confusion matrix. The
matrix’s elements stand for how many occurrences fall into each category. While off-diagonal
elements signify incorrect classifications (false positives and false negatives), diagonal elements
represent accurate predictions (true positives and true negatives). The confusion matrix’s visual
depiction offers important insights into the model’s classification accuracy and any potential
improvement areas.

Table 2 shows the model’s outstanding accuracy of 98.75%, indicating that it could accurately
and precisely classify cases. The model must have this extraordinary accuracy to be dependable
and useful in practical applications. Another impressive statistic that shows a well-balanced
trade-off between recall and precision is the F1 score of 0.9859. This shows that the model
successfully detects meaningful cases while reducing false positives and false negatives. When
memory and precision are both crucial, a high F1 score is especially important. Further demon-
strating the model’s success in accurately recognizing positive events, the recall score of 0.9875
shows that it excels at capturing actual positive instances. Additionally, the model’s accuracy
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Figure 5: Confusion matrix based on true labels and predicted labels.

Table 2
Evaluation matrices of the proposed model.

Evaluation matrices Output

Accuracy 0.9875
F1 Score 0.9859

Recall Score 0.9875
Precision Score 0.9866

in correctly classifying objects is shown by its precision score of 0.9866. These outstanding
evaluation outcomes highlight the LSTM model’s dependability and robustness for the given
task. Such high-performance measures are invaluable in a wide range of applications, especially
those where precision and dependability are critical, including, but not limited to, medical
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diagnosis, fraud detection, and natural language processing. These results support the LSTM
model’s usefulness and effectiveness in the research environment.

5. Conclusion

The implementation of the LSTM approach in the context of IoT security has been thoroughly
explored in this study. The results showed that the LSTM model performs remarkably well
when given the right architecture and instruction. Notably, with an F1 score of 0.9859, recall of
0.9875, and precision of 0.9866, this model obtained a remarkable accuracy rate of 98.75%. These
findings highlight the LSTM model’s dependability and durability, making it a significant tool
in situations requiring exact categorization, which is essential for IoT security. Additionally, it
provided a thorough summary of the CIC-IoT2023 dataset, which served as the basis for the
study and is a useful tool for additional research in this area.

Even though the model has performed exceptionally well, there is a need for more study
to improve its understandability and interpretability, especially in situations where model
assessments are needed for precise comprehension and validation. In addition, scalability and
efficiency issues are crucial, particularly in cases involving extensive IoT deployments.

Future research should broaden the application and accessibility of LSTM models by including
more data types and domains in their scope. Optimizing these models requires investigating
methods like model compression, quantization, and hardware acceleration. Innovative appli-
cations and solutions can be produced by collaboration with domain specialists in healthcare,
finance, and natural language processing. IoT security has significantly advanced, thanks
to LSTM-based methods, and this study is a big step in that direction. It also opens up in-
triguing new directions for future research into improving model performance and real-world
application.
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