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Abstract. The normal and abnormal sounds from the respiratory system shed great light on medical
science by revealing the quality, diseases and changes in people’s lungs. In medicine, this easy and old
method, realized by the stethoscope, facilitates the diagnosis of diseases by specialists. This manual
method can sometimes lead to wrong decisions in terms of sound detection due to different audibility.
Detailed sound analysis is crucial for accurately detecting lung diseases with high mortality rates. As
technology advances, the development of automated approaches based on machine learning is of great
interest as they provide modern and highly accurate analysis. In today’s most popular topic, i.e., the
COVID-19 disaster, the conflict between early detection of respiratory disease and machine learning for
sound signal processing is extremely important. In this study, a machine learning model was developed to
detect respiratory system sounds such as sneezing/coughing in disease diagnosis. The automatic model
and approach development of breath sounds, which carry valuable information, results in early diagnosis
and treatment. A successful machine learning model was developed in this study, which was a strong
response to the challenge called the “Pfizer digital medicine challenge” on the “OSFHOME” open access
platform. In the database provided in this challenge, which consists of 3 parts, features that effectively
showed coughing/sneezing sound analysis were extracted from training, testing and validating samples.
Based on the Mel frequency cepstral coefficients (MFCC) feature extraction method, mathematical and
statistical features were prepared. The sequential forward selection (SFS) feature selection method was
used to select the relevant and dominant variables among the obtained features to represent the model
fully and accurately. Three different classification techniques were considered for successful respiratory
sound classification in the dataset containing more than 3800 sounds. Support vector machine (SVM)
with radial basis function (RBF) kernels, decision tree and ensemble aggregation classification methods
were used as classification techniques. In an attempt to classify coughing/sneezing sounds from other
sounds, SVM with RBF kernels was achieved with 83% success.

Keywords: respiratory sounds, COVID-19, coughing/sneezing, feature extraction, classification

$ negin.melek@giresun.edu.tr (N. Melek)
� https://akademik.yok.gov.tr/AkademikArama/view/viewAuthor.jsp (N. Melek)
� 0000-0001-5297-5545 (N. Melek)

© Copyright for this paper by its authors, published by Academy of Cognitive and Natural Sciences (ACNS).
This is an Open Access article distributed under the terms of the Creative Commons License Attribution 4.0
International (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

43

https://doi.org/10.55056/jec.679
mailto:negin.melek@giresun.edu.tr
https://akademik.yok.gov.tr/AkademikArama/view/viewAuthor.jsp
https://orcid.org/0000-0001-5297-5545
https://acnsci.org/jec
https://creativecommons.org/licenses/by/4.0
https://acnsci.org


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

1. Introduction

This paper is dedicated to the memory of
the late Jalal and Behzad Manshouri, who
passed away from COVID-19 in
September 2021.

The respiratory system, the most important feature of being alive, helps us breathe by
including the airways, blood vessels and lungs. Owing to the cooperation of the muscles that
strengthen the lungs and the respiratory system, gas exchange takes place in the body [38].
It is surprising that the respiratory system has many important functions besides helping
with breathing, which include the ability to speak and smell, balance air temperature and
body temperature as well and remove harmful substances and waste gases from the body. By
considering the factors affecting this vital organ, great success can be achieved in the early
diagnosis of respiratory tract infections and diseases. The sounds emerging from the lungs have a
great role in the early diagnosis of respiratory system diseases [39, 43]. Intensity, frequency, and
quality, which are the characteristics of these sounds, are the considerations for distinguishing
similar sounds.

The presence of cough symptoms in different types of respiratory diseases and the point that
this symptom is a useful tool in diagnosing the disease have been the favourite subject of many
studies [3]. The reflex that defends the lungs against any irritant in the respiratory system
is coughing. Most of the time, a self-healing cough can sometimes be a sign of an important
disease. Cough, which is a symptom of many diseases such as COVID-19, bronchitis, lung
cancer and asthma, has different characteristics in every disease in terms of sound and provides
great convenience to doctors as to diagnosis [6]. In addition to the field of medical science,
automatic sound analysis of coughs and early diagnosis of respiratory diseases have been the
main targets of much research. Thus, automatic analysis and classification of cough or sneezing,
a symptom of deadly diseases such as COVID-19 in respiratory diseases, has become important
today. Artificial intelligence provides great convenience and prosperity in people’s lives and
has become a technology that gives promising results in many studies.

Studies in the early diagnosis of cough-based disease can generally be categorized into two
groups. While the first group is the cough sound classification in a dataset containing different
sound types, the second group is to classify the cough types.

Sputum in the lung in the dry and wet cough type classification was extensively detected in
[34]. Sputum detection should be considered the first sign of many diseases, such as pneumonia,
cancer and infection. In clinical settings, sputum detection examinations are performed indi-
vidually. This study, which increases the accuracy of these tests and facilitates this detection,
proposes a different way according to the characteristics of cough sounds. A dry and wet cough
sound from 131 participants was analyzed as a multi-layer labelling platform. As a result, 88%
sensitivity and 86% specificity were achieved in dry and wet cough classification.

In 2013, a valuable and pioneering study developed an automatic and early detection model for
pediatric pneumonia based on the analysis of respiratory system sounds [2]. This disease, which
has a high mortality rate due to the lack of laboratories and the small number of health teams in
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poor areas, has led to promising results owing to not requiring any physical contact. Successful
decisions were obtained by extracting effective features from cough sounds and applying a
logistic regression classifier. Based on these effective features, the targeted disease could be
differentiated from other diseases with 94% and 75% sensitivity and specificity, respectively.

A major advantage of automatic cough sound classification studies is to minimize the error
rate in detecting dry or wet cough type, which is based only on the subjective judgments of
doctors [48]. To largely solve this problem, a model for sound type analysis has been developed.
After the signal processing steps were passed, the results obtained by automatic classification
were compared with the decisions determined by the two experts. As a result of this comparison,
it was concluded that the proposed model is a useful tool for cough-based remote disease
monitoring and diagnosis.

In the literature review, studies based on different cough classifications are found. The main
goal of these studies is to distinguish the cough sound from among several sounds. Detailed
analysis of cough frequency and severity in patients suffering from cough as the result of chronic
diseases provides valuable information. Based on this issue, automatic cough sound detection is
made from the recordings taken via mobile using the hidden Markov model [30]. Based on the
results of the proposed model, the feasibility of the hidden Markov method in detecting cough
in mobile patients is demonstrated.

In another study conducted in 2019, information about preprocessing in cough sound detec-
tion, especially in noisy environments, was presented. This study showed that a preprocessing
step was necessary to suppress the noise in cough sounds to minimize the margin of error in
diagnosing respiratory disorders [8].

A model proposal that detected abnormal situations by examining cough sound information
was made in [44]. The main purpose of this real-time model was to provide remote monitoring
of older and lonely individuals and early intervention in critical situations. Two models in the
dataset were used for cough sound classification, including different environmental sounds
and cough. One was a neural network, and the other was a hidden Markov model. This model
was shown to provide high performance at a low signal-to-noise ratio. It is noteworthy that
presenting a simple prototype of the proposed model provided great convenience to the user
candidate due to its use of the wireless microphone.

To detect different patterns in the flow of cough sound, a system using an acoustic detector
was presented in [45]. The study focused on the classification process to distinguish the impulse
patterns in the cough sound from other impulsive sounds. This system, which is strong against
noise and reverberation, showed 90% and 99% sensitivity and specificity, respectively, due to
having short-term architecture used in the field of deep neural networks.

The difficulties and advantages of studies with artificial intelligence methods in cough sound
detection and early disease diagnosis were presented in [3] as a review study. In this compre-
hensive review based on the cough sound classification, different methods were compared. The
most commonly used method in cough-based disease diagnosis studies was logistic regression
and SVM. On the other hand, compared with random forest algorithms and deep learning
architecture, artificial intelligence algorithms were widely preferred.

In our machine learning model, proposed as a solution to the COVID-19 disaster in 2021,
spectral analysis of voice recordings was taken into account using a dataset consisting of cough
sounds only. In the dataset of 16 individuals, a small sample pool obtained from 121 samples was
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prepared to lay the foundation for the model design. In this model, which gives very successful
classification results, features obtained from cough sound samples are obtained by short-term
Fourier transform (STFT) and Mel-frequency cepstral coefficients (MFCC) methods. Then, the
COVID-19 diagnosis was performed using the SVM classifier. The disadvantages of this study
are the small size of the dataset and the absence of the feature selection step, which is one of
the signal processing steps.

In a study conducted in 2021 [1], diagnosing patients with Coronavirus in smart hospitals
was possible thanks to the cooperation of the Internet of Things (IoT) and machine learning
technology. In the presented model, diagnosis performance was achieved as 95% using the
support vector machine algorithm. This successful model is also extremely effective in reducing
the mortality rate by minimizing crowding in hospitals and greatly reducing the workload of
healthcare personnel.

Within the scope of automatic diagnosis models based on machine learning, a real-time
patient monitoring system was designed by analyzing data from Canada Health Infoway and
different organizations. Thanks to the remote monitoring method, a great step has been taken
in the biomedical field, and promising results have been obtained to detect COVID-19 [47].

In machine learning models, model optimization is very important in the trial process and
model development. In this context, the adequacy and control of the physical system have
been the main target of many studies [52, 54]. Effective stability is provided in the analysis
of non-linear random sound signals and in online model design. Different studies have been
carried out on fault detection in machine learning model design. Thanks to the asynchronous
filters proposed in the study, fault detection was carried out without error alarms [55]. At the
signal processing stage, randomly selected audio signal lengths can be called with an effective
iterative learning control (ILC) method [56]. This method, which is based on a numerical basis,
has been verified to be successful in terms of performance.

Detailed sound analysis is crucial for accurately detecting lung diseases with high mortality
rates. As technology advances, the development of automated approaches based on machine
learning is of great interest as they provide modern and highly accurate analysis. In this study,
an automatic early detection system based on coughing/sneezing sound classification was tried
to be modelled. In our work, we focused on designing a new machine learning model, paying
close attention to the invitation of the open Science Center “OSFHOME” platform [35]. The
three-part dataset created by this platform for the “Pfizer digital medicine challenge” consists of
training, validating and testing sets. As the result of the efficient feature extraction method from
this dataset, the classification stage was entered to complete the designed machine learning
model. The validation dataset was analyzed to obtain the parameters of the used classifier
algorithms.

In this dataset, the class covering coughing/sneezing sounds could be distinguished from
those comprising other sounds. The designed machine learning model could be useful in the
early diagnosis of the current widespread COVID-19 disaster and other diseases caused by
viruses that spread through coughing/sneezing in crowded places.
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2. Methods and test protocol

2.1. Dataset

The dataset of the proposed article was made up of signal from ESC-50 [36] and AudioSet [16]
audio files. The general introduction of these datasets can be presented briefly and concisely in
the following sentences:

The ESC-50 dataset is a collection of approximately 2000 types of labelled sounds suitable for
sound classification studies. This dataset includes five major categories: the sounds of animals,
natural sounds/water sounds, human sounds excluding speech, domestic sounds, and city noise
sounds. ESC-50, one of the popular datasets since 2016, has many studies regarding audio signal
analysis and classification [15].

Regarding data usability, OSF’s fast access, up-to-date, and reliability create a solid basis
for researchers to conduct projects. The open-access dataset in the presented article can be
accessed from the link: https://osf.io/tmkud/.

By using artificial intelligence algorithms based on machine learning in the age of technology,
this dataset can play an important role in the early detection of respiratory tract infections and
in the analysis of different respiratory sound-induced diseases.

The AudioSet dataset, consisting of YouTube videos, comprises 10-second human-labeled
audio clips. A detailed study has been made on the AudioSet dataset to open the door to acoustic
sound event detection [14].

The proposed coughing/sneezing sound classification analysis presents the graph representing
the training, validating and testing sample number in the three-part dataset consisting of ESC-50
and AudioSet audio files in figure 1. As can be seen, there were 3718, 1221 and 1654 samples,
respectively, for training, validating and testing. The rough block diagram of the main work is
shown in figure 2.

The study divided the dataset into two groups: patients and healthy individuals. The class
containing the patient labels included respiratory diseases such as sneezing and coughing,
while the healthy class included common human-induced sounds such as laughing and singing.
Any sound except sneezing and coughing was included in the data set. Sound recordings with
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a length of 4.98 seconds were sampled at 44100 Hz. All the data analyses in the study were
performed using the Matlab 2019b application.

In the dataset used, figure 3 is given as an example to obtain information about the behaviour
of different sound signals in addition to coughing/sneezing sound signals. This figure presents
time, frequency, and MFCC representation for raw signals in the validation dataset in healthy
and patient individuals.

2.2. Data processing

2.2.1. MFCC feature extraction technique

MFCC feature extraction is an efficient and common method for analyzing audio signals.
Different techniques, such as linear prediction coefficients (LPC) and perceptual linear prediction
(PLP) coefficients, are also used as feature extraction methods. MFCC has proven more successful
than other methods in speech recognition systems.

This technique generally consists of five basic parts. These are, respectively, pre-emphasis, sig-
nal framing and windowing, applying the discrete Fourier transform, calculating the logarithm
of the magnitude and multiplying the frequencies to the Mel scale (called the Mel filter bank
step) and, finally, computing the inverse discrete cosine transform. The first stage, pre-emphasis,
is actually a process that compensates for the rapidly distorting spectrum of the audio signal.
Framing is the other step in dividing the audio signal into smaller compartments. The most
important task of the windowing process is to prevent discontinuity of the obtained audio signal
[19]. This study performed the windowing process by selecting the Hamming window. The

48

https://doi.org/10.55056/jec.679


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

Figure 3: Time, time-frequency, and MFCC representation for raw signals in the validation dataset of
healthy and patient individuals.

working principle of this window is shown in equation (1):

𝑊 [𝑛] = 0.54− 0.46 cos

[︂
2𝜋𝑛

𝑁 − 1

]︂
(1)

where 𝑊 [𝑛] and 𝑁 are the 𝑛-th coefficient of the Hamming window and the number of samples
per frame, respectively [19]. Following the windowing process, the Fourier transform moves
the audio signal from the time domain to the frequency domain. The other stage, the Mel filter
bank, consists of overlapping filters. There was a relationship between the actual frequency
and the perceived frequency known as Mel, as presented in equation (2):

𝑓𝑀𝑒𝑙 = 2595 log10

(︂
1 +

𝑓

700

)︂
(2)

In this equation, 𝑓𝑀𝑒𝑙 is the output of the filter bank, and 𝑓 is its input. 2595 and 700 in the
equation are constant numbers.

In the MFCC algorithm, which is used as a feature extraction step in the data analysis phase,
priority is given to calculating the Mel frequency cepstral coefficients for each classifier. In the
𝑀 ×𝑁 matrix obtained from the MFCC application, the 𝑀 and 𝑁 parameters showed the Mel
frequency coefficients and the number of windows, respectively. This coefficient was evaluated
between 2 and 39 for each classifier in the present study. A hamming window, similar to a raised
cosine structure and without zero ends, was used in the study. Using trial-and-error theory,
the length of this window and the window overlap were selected as (4×512) and (1024+512),
respectively. As the result of the evaluation between 2 and 39, the effective Mel coefficient value
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was determined as 23. After selecting the appropriate coefficient, seven statistical values for
each coefficient index were considered as features: mean, standard deviation (SD), root means
square (RMS), entropy, kurtosis (KUR), skewness (SKW) and variance (VAR). Thus, the size of
the feature vector was calculated as M*7 (23*7=161). MFCC feature extraction process flowchart
is shown in figure 4.
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2.3. Sequential forward selection (SFS) as feature selection method

Feature selection (FS) is a useful process used to reduce the number of obtained features and
select more efficient ones. In the problem-solving phase, some unnecessary features cause
confusion and cluttered feature space, decreasing classification performance. FS is greatly
beneficial in machine learning studies as it is simple to operate, accurate, and fast.

Many methods exist for reducing the feature set size and selecting dominant features. The
sequential forward selection (SFS) technique is successful in terms of speed and ease of under-
standing.

This algorithm is based on sequential feature selection. Working as a bottom-up search tool,
it gradually adds features that seem suitable due to the computational functions from an empty
set. An important advantage of this algorithm is that the newly chosen feature is selected from
the remaining feature set, so the newly designed and expanded set will have a minimum error
in terms of the classification process compared to other additions.
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2.4. Classification algorithms

2.4.1. Nonlinear SVM and RBF kernel functions

The SVM classification method is frequently preferred in regression analysis and classification-
based research. In machine learning and signal processing, this supervised model is known as a
robust method in the prediction field due to its strong statistical basis and ability to minimize
the probable risk ratio. The easiest and most understandable definition of the SVM method can
be expressed as follows: it reveals a decision hyperplane by considering the optimum support
vectors and then performs the most appropriate data classification in the dataset. Thus, it is
ideal for two-class problems [31]. This algorithm was first shown to be capable of linearly
separating samples in a dataset with a linear format. Thus, in this case, it is responsible for
choosing the hyperplane that maximizes the margin between the two classes with linearly
distributed samples.

A nonlinear SVM classifier can be obtained from a nonlinear operator application called
‘kernel trick’. Owing to this trick, data analysis can be moved to the multidimensional feature
space [50]. One of the important factors affecting the classification result is the selection of
kernels and effective parameters related to these kernels [42]. The most common RBF kernel
in the SVM classification method was used in the study. The parameters that directly affect
the performance of this nonlinear SVM type are C and 𝛾. Parameter C is actually defined as a
regulation criterion in SVM. For the sake of maximizing the margin of the decision function,
this parameter sometimes prevents the correct classification of the samples. In the hyperplane
representation, a limited number of selected points result from a small C value in determining
the critical boundary between the classes. This wrong choice may result in obtaining incomplete
information [10]. On the other hand, with a large C value, wrong decisions can be made again
by obtaining a large decision limit due to the selection of more sample points. As a result,
choosing the optimum value of C can minimize the error in the training phase [42]. Another
important parameter in the designed training model is 𝛾. This parameter actually shows the
desired degree of curvature in the decision boundary. For two classes, the optimal selection of
the gamma value, which shows the distance between the decision boundary and the nearest
support vectors, is important.

A high 𝛾 value means choosing the ones closest to the decision boundary in terms of samples,
and a low 𝛾 means choosing the farthest points on the decision boundary. 𝑅𝐵𝐹 , one of the
kernel varieties selected in the study, is presented in equation (3). In the presented formula, 𝜎
shows the standard deviation (SD) of the samples and is chosen as 1 in this study.

𝐾𝑅𝐵𝐹 = exp

(︂
−‖𝑥− 𝑦‖2

2𝜎2

)︂
(3)

2.4.2. Decision tree

Decision tree, one of the important classifiers in artificial intelligence based on machine learning,
has high speed, powerful learning model, and an easy structure [7]. This algorithm, which
falls under the category of supervised classifier, is used to solve regression and classification
problems. The purpose is to create a model to predict the class of an unknown sample based on
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the decision rules learned from the training data. This method, which subdivides the analysis
dataset, consists of the root nodes and internal nodes. Each node comprises a single main part
and two or more sub-parts called descendants. Based on Magerman’s view, the decision tree is
applied to the model to support the decision process at the classification stage. Thus, it creates
possibilities for each choice in the different states of the decision.

The first node in the decision tree is the root node. As the result of the root state evaluation,
the observation process that results in “Yes” or “No” is classified. Internal nodes representing
attributes are located below the root node. As the number of nodes increases, the complexity of
the designed model will increase. In this tree-like flowchart, the part that presents the result is
the leaves, which are the lowest nodes [51]. This method, compatible with different variables,
has great advantages in machine learning because it is easy to understand and can be classified
with optimum calculation. The “fitctree” command was selected to set the maximum branch
divisions of the decision tree. At this stage, the division criterion was considered as “gdi”. In
terms of the parameter of this algorithm, the maximum number of splitting (“MaxNumSplits”)
was chosen as 20 according to node splitting rules [12].

2.4.3. Ensemble aggregation “bagging” and “boosting”

In data analysis, the problem that classification studies often encounter is class irregularity and
imbalance. Different methods have been developed to eliminate this problem, which occurs in
disease diagnosis, face recognition, fluid leak diagnosis, and many other areas. Three different
ways are followed to solve this problem. In the first way, by emphasizing the importance
of positive samples, the new algorithm is obtained by correcting or changing the existing
algorithms (i.e., algorithm level). In the second way, a pre-processing step is added. The aim is to
minimize the effect of class distributions that suddenly change direction and decision (i.e., data
level). The third method reinforces cost-sensitive methods by combining algorithm and data-
level approaches. In addition to the three approaches mentioned above, the ensemble technique
is used in the class imbalance problem [37]. This algorithm, which is used in classification and
regression in the field of artificial intelligence based on machine learning [53], is designed to
increase the stability and accuracy of the existing algorithms [17].

Bagging and boosting are the most common ensemble techniques that make big changes
in a low-performance and powerless classification algorithm. The biggest advantage of these
techniques is that they prepare the classifiers in advance, depending on the desired variety,
while considering the training set. The bootstrapping concept presented by Breiman for the
bagging technique creates a new dataset for training classifiers by randomly drawing class
samples. The basis of the method is to gain variety by re-sampling using data subsets. After
obtaining this variety, the class of an unknown guest sample is determined by voting [13]. The
boosting technique, recognized by Schapire in 1990, has proven authoritative in producing a
powerful classifier model [40]. AdaBoost, one of the most effective and powerful members of the
boosting family, is used as a representative approach in data mining [51]. Minimizing variance
and deviation, it performs well by increasing the margin between the classes, similar to the
working principle of the SVM. The working logic of AdaBoost can be summarized as follows:
using the whole dataset; it makes a focus and effort to correctly guide the hard-to-separated
samples by considering the samples misclassified in each iteration. It reduces the weights of the

52

https://doi.org/10.55056/jec.679


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

correctly classified samples and increases the weights of the wrong samples by playing with the
sample weights in each iteration. Different weights are assigned to each classifier during the
testing phase. This process gives more credit and confidence to efficient classifiers. Thus, the
choice of the class label for a guest instance is determined by the majority voting per classifier.

In this study, “AdaBoost.M1”, a derivative of the boosting algorithm, and the “bagging”
technique were used to smooth out the class imbalance. The maximum number of splittings for
the “bagging” and “AdaBoost.M1” algorithms was chosen as 3715 and 100, respectively.

The numerical values of the classification algorithms were selected using the trial-and-error
method. The parameters selected by this method are numerical values that adjust the algorithm
to work optimally.

3. Results

After the features were obtained, the accuracy rates of the classifiers on the validation set
using different MFCC coefficients are presented in figure 5. The reason the Mel coefficient was
chosen as 23 was the maximum accuracy rate of the SVM algorithm, which provided successful
performance at this value.

To increase the study’s performance, classification algorithms’ efficiency was focused on by
applying SFS feature selection. By performing the SFS method to each classifier and considering
23 effective Mel coefficients, the improved accuracy rates for SVM, decision tree, “AdaBoost.M1”
and “bagging” are shown in figures 6, 7, 8, and 9, respectively. Owing to the feature selection
used to optimize the number of features in the dataset, omit unnecessary data, reduce the
training time and, most importantly, increase the accuracy rate, 80 outstanding and effective
features specific to each classification were selected from among 161 features. A closer look
at figure 5 shows that, among the classifiers, the SVM provided successful performance and
the decision tree yielded less. In the SVM algorithm, which exhibited successful accuracy, the
highest percentage of accuracy was shown as 80.31% in the Mel coefficient, which is 23, as seen
in figure 5.

Figure 5: Accuracy rates of the classifiers on the validation set using different MFCC coefficients.
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Considering the success of each classifier in figures 6, 7, 8, and 9, the effective number of
features was chosen as 74, considering the behaviour of the successful SVM classifier. As a result
of this selection, according to Figure 6, the accuracy success rate of SVM reached 83.18%. In
other words, owing to the approximately 50% decrease in the number of total features (161), the
classifier success percentage increased by 2.87%. This success was determined as 75.22%, 78.5%
and 78.99% for the other three classifiers, as presented in figures 7, 8, and 9. On the other hand,
when the graph of accuracy success according to 80 features in the SVM classifier was taken
into visual analysis, the 83.01% success of this classifier in the number of 45 features cannot
be overlooked. Also, it was observed that the ensemble aggregation derivatives “bagging” and
“AdaBoost-M1” showed similar behaviours.

Figure 6: Accuracy rates of the SVM classifier after applying SFS.

Figure 7: Accuracy rates of the decision tree classifier after applying SFS.

The interpretation and final result of this analysis on the validation data are presented in
table 1. Based on the presented graphs, the successful accuracy rate in the selected effective
80 features was more pronounced for the first 74 features. Likewise, the accuracy, sensitivity,
specificity, recall, precision, and area under the curve (AUC) values of the testing data for the
proposed classifier algorithms after selecting effective features are presented in table 2. As
seen in these tables, in the cough and sneeze analysis early diagnosis study, the SVM algorithm
appeared successful in the validation and test data, while the second successful algorithm was
the “AdaBoost.M1” algorithm.
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Figure 8: Accuracy rates of the “Bagging” classifier after applying SFS.

Figure 9: Accuracy rates of the “AdaBoost.M1” classifier after applying SFS.

Table 1
Validation data classification accuracies and sensitivity, specificity values for 74 effective features and
Mel coefficient = 23.

Classification parameters Accuracy Sensitivity Specificity

Decision tree “MaxNumSplits”=100 0.7596 0.7752 0.7344
AdaBoost.M1 “MaxNumSplits”=20 0.8022 0.8603 0.7087

Bagging “MaxNumSplits”=3715 0.8014 0.8484 0.7259
SVM 𝛿=1 0.8318 0.8776 0.7580

As a result of the selection of active features and Mel coefficient 23, the SVM classifier in
the validation data represents accuracy, patient sensitivity, and specificity with 83%, 87.76%,
and 75.8%, respectively. Keeping the conditions constant, i.e., 74 features and Mel coefficient
of 23, these classification performance values in the test dataset were determined as 77.60%,
81.58%, and 71.27% for accuracy, sensitivity, and specificity, respectively. As expected, the SVM
algorithm is the best-performing classifier in both validation and test data analysis.
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Table 2
Classification performance measures after selecting 74 effective features and Mel coefficient = 23 in the
test data.

Classification Accuracy Sensi- Speci- Recall Precision AUC
parameters tivity ficity

Decision tree “MaxNumSplits”=100 0.7034 0.7810 0.6041 0.7810 0.7161 0.6926
AdaBoost.M1 “MaxNumSplits”=20 0.7621 0.7764 0.7322 0.7764 0.8586 0.7543

Bagging “MaxNumSplits”=3715 0.7603 0.7808 0.7199 0.7808 0.8457 0.7504
SVM 𝛿=1 0.7760 0.8158 0.7127 0.8158 0.8190 0.7642

4. Discussion

Detailed analysis of respiratory sounds opens up great possibilities in the medical world. Ad-
vances in technology and the reflection of this development on the medical world have led to
the design of digital recording and advanced instruments. The recording and visualization of
respiratory sounds, which have different characteristics, can be an early harbinger of some
diseases that harm people’s lives [5]. For this reason, a comprehensive classification study based
on sneezing/coughing sounds has been conducted to analyze the diversity of sounds originating
from the respiratory system and to think this analysis will be useful for the early diagnosis of
diseases.

We found no comprehensive studies on the presented dataset that responded to the “Pfizer
digital medicine challenge” invitation. As mentioned, since there is no study on this dataset, it
was not considered appropriate to compare the results of the presented model with studies on
different datasets. However, explaining the results of some cough-based studies generally seems
useful. It has been known for many years that coughing sounds are a symptom of many diseases
and are of medical importance. Based on this information, a compilation study was made by
Korbas et al. [26]. In a 2006 study, healthcare professionals analyzed cough sounds, showing
that these analyses would help them identify cough sound characteristics. However, it is seen
that the analyses made in those years were insufficient in terms of diagnosis [46]. Wavelet
analysis of volunteers with cough-based disease originating from the respiratory system was
the main target of another study [25]. Using the discriminant analysis method, nearly 90%
success was achieved by separating the cough sounds of healthy subjects from the cough sound
characteristics of volunteers with asthma bronchial and chronic lung diseases. Irregular and
abnormal pulmonary function detection was performed by classifying cough sound and airflow
patterns. In this successful study, a new model for cough sound classification was developed. In
this system, a bright light was shed in the medical world by diagnosing abnormal lung functions
[18] by considering the acoustic properties of airflow and coughing sound. The advantages
and difficulties of cough sound-based studies regarding disease diagnosis were examined in
a comprehensive current review study [3]. Finally, we emphasized the importance of cough
while considering the different studies reviewed over the last 25 years or so. From the early
diagnosis of respiratory system diseases, we found that cough is a strong candidate as it exhibits
variable patterns. Only the passage of years and the advancement of technology seem to have
the potential to turn this cough candidate into a more powerful and rapid diagnostic tool.
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Table 3
Comparison of several important studies regarding cough sound analysis.

Studies Advantages Disadvantages

[22] Presenting a successful diagnosis of pul-
monary diseases

Small dataset

[20] Convenient and easy-to-use mobile app Low efficiency as a result of small datasets
[23] Acceptable accuracy Poor quality sound samples due to Rasp-

berry Pi device usage
[49] Convenient and easy-to-use mobile app Need for individual coughs on recording

process
[9] Low-cost Small dataset size
[32] High accuracy, using a single cough sound

to COVID-19 recognition
Small dataset size

[31] Diagnosis COVID-19 patients by classify-
ing only a single cough sound, high accu-
racy

Small dataset size

[41] Ability to classify five different cough
sounds with high success, computationally
simple and explainable

Including only cough, breath, and speech
classification

[24, 29] The same dataset, Deep learning model
design for COVID-19 diagnosis by cough
sound analysis, High classification success

Hardware dependency, complex architec-
tures

Proposed
study

The first machine learning study conducted
on this dataset, acceptable dataset size and
accuracy, powerful model design in the di-
agnosis of respiratory diseases by sneezing
and coughing sound classification in the
dataset containing different sounds, largely
overlapping with results of related studies
in terms of cough sound classification

Application not ready and under construc-
tion to switch to real-time implementation

COVID-19, which has formed the blind years of our lives since 2019, continues. Promising
studies have been revealed with the cooperation of artificial intelligence/machine learning tech-
nologies and cough sound diagnosis, which are important in the fight against many respiratory
diseases such as COVID-19. A summary of some of these studies is presented in table 3.

As a result, this study invites researchers working in this field by giving fruitful results as a
proposed pioneering response to the challenge call for machine learning model development
for the diagnosis of respiratory tract diseases.

This study answered a challenge posed by the “OSFHOME” platform, proving that this dataset
has sufficient potential for disease early detection model design. A machine learning model
was developed to detect sounds such as coughing/sneezing in this dataset, a combination of
ESC-50 and AudioSet audio files. Since 2016, different studies have been carried out on the
ESC-50 dataset. These studies with different objectives have generally focused on sound event
recognition, sound classification with neural networks and environmental sound classification
[27, 33]. Statistical features were obtained by applying the MFCC feature extraction method,
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common in sound analysis studies [32] in this three-stage dataset. Contrary to the previous
study [32], this machine learning model trained on a large number of samples shows good and
successful classification performance in terms of dataset samples. Using the SFS method aimed
to increase the performance of classification techniques by reducing the number of features
to about half and selecting effective features. Coughing/sneezing sounds were successfully
classified from other sounds in this mixed and crowded dataset using three classification
algorithms. As a result of selecting effective features, the SVM-RBF classifier was ahead of other
classifiers with 83.18% success in the validation data. On the other hand, in the testing data, this
classifier achieved successful performance by distinguishing coughing/sneezing sounds from
other sounds with 77.60% success. It caused great sway that the results of the algorithms used in
this study largely overlapped with the respiratory cough sound diagnosis studies. Widespread
active use of the SVM classifier has been discovered in cough sound diagnostic research [3].

This machine learning model based on coughing/sneezing sound analysis seems useful for
early diagnosing diseases such as COVID-19 [21, 28]. The system can be used as an effective
and distinctive tool in crowded environments by allowing it to be installed on smartphones as
an application. Since these models depend on automatic machine learning technology, they can
minimize the risk of virus transmission regarding human interaction in infectious diseases [11].

The machine learning-based model proposed in our dataset, consisting of the combination
of AudioSet and ESC-50, shows a great advantage in preventing the spread of infection by
providing timely and remote diagnosis. This benefit automatically satisfies the requirement to
comply with legal duties from communicable disease diagnosis limitations [3]. The existence
of some factors that affect the quality of the audio recordings and cause them to deteriorate
directly affects the sample quality of the training dataset in the detection of respiratory diseases.
To combat this issue, identifying and eliminating uncontrolled factors as much as possible is
important in improving model performance. The sound recordings used in our study are clean
enough to be called noiseless.

One of the important goals of this pioneering work is to enable the ordinary algorithms
used in many cough sound analyses to progress in parallel with modern technology to deeply
understand the disease spread and virus structure [4]. We are curious to see where the results
will lead, using the deep learning application as an example.

5. Conclusion

A detailed analysis of respiratory system sounds, such as coughing/sneezing, was considered
to accelerate the disease diagnosis. Owing to the design of the proposed automatic model,
diagnosing and treating respiratory system diseases that can lead to fatal consequences can
accelerate. In this case, in crowded environments, a portable application or smart model design
based on machine or deep learning is indispensable. The study discusses various methods such
as SVM, decision tree, and ensemble aggregation to distinguish cough and sneezing sounds
from different sounds. The proposed study was presented as a strong response to an invitation
called the “Pfizer digital medicine challenge”. The three-stage dataset consists of ESC-50 and
AudioSet audio files, and the features that best represent coughing/sneezing sounds were
extracted using the MFCC method. After obtaining the statistically appropriate features based
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on this feature extraction method, the coughing/sneezing sound classification process was
successfully performed for three different classifiers. Considering the results, SVM was the most
successful algorithm among the SVM, decision tree, and ensemble aggregation classifiers. Based
on the results of deep-rooted and detailed studies based on cough sound diagnosis, it is not
overlooked that the algorithm results match the proposed study. Widespread active use of the
SVM classifier has been discovered in cough sound diagnostic research. Although there was no
detailed machine learning study on this dataset, the proposed model was useful in automatically
detecting coughing/sneezing sounds regarding classification accuracy. This pioneering research
on the described dataset sheds a bright light on the field of medicine by enabling early detection
of more serious and deadly viruses and infections, greatly preventing major catastrophes from
occurring. As a result of this study, the best classifier in the training dataset was the SVM
algorithm with 83.18% accuracy, while the same algorithm was successful with 77.60% accuracy
in the test dataset.

It is hoped that other feature selection methods, one of the study’s shortcomings, will be
added to the machine learning steps, and even more successful results will be obtained for
future studies. By designing a deep learning model, a successful comparison study between
machine learning and deep learning can be presented. Additionally, classification performance
success evaluation can be analyzed using different metrics. Future development of the study
was planned as follows: tuning a larger dataset using different datasets, developing method
comparison-based work by applying other feature extraction techniques and classification
algorithms and testing up-to-date analytical tools applicable to large datasets. On the other
hand, in the comprehensive research that we are working on, we apply our proposed machine
learning model to different datasets and comprehensively analyze the suitability of this model
in detecting COVID-19.

In addition, the proposed model can be used for early diagnosis and treatment of COVID-19
within the scope of smart health applications and tools. This successful model, which is being
prepared for the use of smart hospitals as a future target, is extremely effective in reducing the
mortality rate by reducing the crowding in healthcare institutions and greatly reducing the
workload of healthcare personnel.

6. Conflict of interest statement

The author has no financial or personal relationships with others or organizations that could
inappropriately influence their work.

References

[1] Abdulkareem, K.H., Mohammed, M.A., Salim, A., Arif, M., Geman, O., Gupta, D. and
Khanna, A., 2021. Realizing an Effective COVID-19 Diagnosis System Based on Machine
Learning and IoT in Smart Hospital Environment. IEEE Internet of Things Journal, 8(21),
pp.15919–15928. Available from: https://doi.org/10.1109/JIOT.2021.3050775.

[2] Abeyratne, U., Swarnkar, V., Setyati, A. and Triasih, R., 2013. Cough Sound Analysis Can

59

https://doi.org/10.55056/jec.679
https://doi.org/10.1109/JIOT.2021.3050775


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

Rapidly Diagnose Childhood Pneumonia. Annals of Biomedical Engineering, 41, p.2448–2462.
Available from: https://doi.org/10.1007/s10439-013-0836-0.

[3] Alqudaihi, K.S., Aslam, N., Khan, I.U., Almuhaideb, A.M., Alsunaidi, S.J., Ibrahim, N.M.A.R.,
Alhaidari, F.A., Shaikh, F.S., Alsenbel, Y.M., Alalharith, D.M., Alharthi, H.M., Alghamdi,
W.M. and Alshahrani, M.S., 2021. Cough Sound Detection and Diagnosis Using Artificial
Intelligence Techniques: Challenges and Opportunities. IEEE Access, 9, pp.102327–102344.
Available from: https://doi.org/10.1109/ACCESS.2021.3097559.

[4] Alsunaidi, S.J., Almuhaideb, A.M., Ibrahim, N.M., Shaikh, F.S., Alqudaihi, K.S., Alhaidari,
F.A., Khan, I.U., Aslam, N. and Alshahrani, M.S., 2021. Applications of Big Data Analytics
to Control COVID-19 Pandemic. Sensors, 21(7). Available from: https://doi.org/10.3390/
s21072282.

[5] Amper-West, M., Saatchi, R., Barker, N. and Elphick, H., 2019. Respiratory sound analysis
as a diagnosis tool for breathing disorders. The 32nd International Congress and Exhibition
on Condition Monitoring and Diagnostic Engineering Management. Unpublished. Available
from: http://shura.shu.ac.uk/24966/.

[6] Andreu-Perez, J., Pérez-Espinosa, H., Timonet, E., Kiani, M., Girón-Pérez, M.I., Benitez-
Trinidad, A.B., Jarchi, D., Rosales-Pérez, A., Gatzoulis, N., Reyes-Galaviz, O.F., Torres-
García, A., Reyes-García, C.A., Ali, Z. and Rivas, F., 2022. A Generic Deep Learning Based
Cough Analysis System From Clinically Validated Samples for Point-of-Need Covid-19
Test and Severity Levels. IEEE Transactions on Services Computing, 15(3), pp.1220–1232.
Available from: https://doi.org/10.1109/TSC.2021.3061402.

[7] Batra, M. and Agrawal, R., 2018. Comparative Analysis of Decision Tree Algorithms. In: B.K.
Panigrahi, M.N. Hoda, V. Sharma and S. Goel, eds. Nature Inspired Computing. Singapore:
Springer Singapore, pp.31–36. Available from: https://doi.org/10.1007/978-981-10-6747-1_
4.

[8] Bhateja, V., Taquee, A. and Sharma, D.K., 2019. Pre-Processing and Classification of
Cough Sounds in Noisy Environment using SVM. 2019 4th International Conference
on Information Systems and Computer Networks (ISCON). pp.822–826. Available from:
https://doi.org/10.1109/ISCON47742.2019.9036277.

[9] Binnekamp, M., Stralen, K., Boer, L. and Houten, M., 2021. Typical RSV cough: myth
or reality? A diagnostic accuracy study. European Journal of Pediatrics, 180, pp.57–62.
Available from: https://doi.org/10.1007/s00431-020-03709-1.

[10] developers scikit-learn, 2024. RBF SVM parameters — scikit-learn 1.4.1 documentation.
Available from: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

[11] Doremalen, N. van, Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson,
B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., Wit, E. de
and Munster, V.J., 2020. Aerosol and Surface Stability of SARS-CoV-2 as Compared with
SARS-CoV-1. New England Journal of Medicine, 382(16), pp.1564–1567. Available from:
https://doi.org/10.1056/NEJMc2004973.

[12] Fit binary decision tree for multiclass classification - MATLAB fitctree, 2024. Available
from: https://www.mathworks.com/help/stats/fitctree.html.

[13] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. and Herrera, F., 2012. A Review
on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based
Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

60

https://doi.org/10.55056/jec.679
https://doi.org/10.1007/s10439-013-0836-0
https://doi.org/10.1109/ACCESS.2021.3097559
https://doi.org/10.3390/s21072282
https://doi.org/10.3390/s21072282
http://shura.shu.ac.uk/24966/
https://doi.org/10.1109/TSC.2021.3061402
https://doi.org/10.1007/978-981-10-6747-1_4
https://doi.org/10.1007/978-981-10-6747-1_4
https://doi.org/10.1109/ISCON47742.2019.9036277
https://doi.org/10.1007/s00431-020-03709-1
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://doi.org/10.1056/NEJMc2004973
https://www.mathworks.com/help/stats/fitctree.html


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

Reviews), 42(4), pp.463–484. Available from: https://doi.org/10.1109/TSMCC.2011.2161285.
[14] Gemmeke, J.F., Ellis, D.P.W., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C., Plakal, M.

and Ritter, M., 2017. Audio Set: An ontology and human-labeled dataset for audio events.
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp.776–780. Available from: https://doi.org/10.1109/ICASSP.2017.7952261.

[15] Gong, Y., Chung, Y.A. and Glass, J., 2021. AST: Audio Spectrogram Transformer. Proc. In-
terspeech 2021. pp.571–575. Available from: https://doi.org/10.21437/Interspeech.2021-698.

[16] Google, 2024. AudioSet. Available from: https://research.google.com/audioset/.
[17] Gudivada, V., Irfan, M., Fathi, E. and Rao, D., 2016. Cognitive Analytics: Going Beyond Big

Data Analytics and Machine Learning. In: V.N. Gudivada, V.V. Raghavan, V. Govindaraju
and C. Rao, eds. Cognitive Computing: Theory and Applications. Elsevier, Handbook of
Statistics, vol. 35, chap. 5, pp.169–205. Available from: https://doi.org/10.1016/bs.host.2016.
07.010.

[18] Gurung, A., Scrafford, C.G., Tielsch, J.M., Levine, O.S. and Checkley, W., 2011. Computerized
lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: A
systematic review and meta-analysis. Respiratory Medicine, 105(9), pp.1396–1403. Available
from: https://doi.org/10.1016/j.rmed.2011.05.007.

[19] Hidayat, R., Bejo, A., Sumaryono, S. and Winursito, A., 2018. Denoising Speech for MFCC
Feature Extraction Using Wavelet Transformation in Speech Recognition System. 2018
10th International Conference on Information Technology and Electrical Engineering (ICITEE).
pp.280–284. Available from: https://doi.org/10.1109/ICITEED.2018.8534807.

[20] Hoyos-Barceló, C., Monge-Álvarez, J., Pervez, Z., San-José-Revuelta, L.M. and Higuera,
P.C. de-la, 2018. Efficient computation of image moments for robust cough detection
using smartphones. Computers in Biology and Medicine, 100, pp.176–185. Available from:
https://doi.org/10.1016/j.compbiomed.2018.07.003.

[21] Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, M.S., Ali, K., John, C.N., Hussain,
M.I. and Nabeel, M., 2020. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19
from cough samples via an app. Informatics in Medicine Unlocked, 20, p.100378. Available
from: https://doi.org/10.1016/j.imu.2020.100378.

[22] Infante, C., Chamberlain, D., Fletcher, R., Thorat, Y. and Kodgule, R., 2017. Use of cough
sounds for diagnosis and screening of pulmonary disease. 2017 IEEE Global Humanitarian
Technology Conference (GHTC). pp.1–10. Available from: https://doi.org/10.1109/GHTC.
2017.8239338.

[23] Khomsay, S., Vanijjirattikhan, R. and Suwatthikul, J., 2019. Cough detection using PCA
and Deep Learning. 2019 International Conference on Information and Communication
Technology Convergence (ICTC). pp.101–106. Available from: https://doi.org/10.1109/
ICTC46691.2019.8939769.

[24] Khriji, L., Ammari, A., Messaoud, S., Bouaafia, S., Maraoui, A. and Machhout, M., 2021.
COVID-19 Recognition Based on Patient’s Coughing and Breathing Patterns Analysis:
Deep Learning Approach. 2021 29th Conference of Open Innovations Association (FRUCT).
pp.185–191. Available from: https://doi.org/10.23919/FRUCT52173.2021.9435454.

[25] Knocikova, J., Korpas, J., Vrabec, M. and Javorka, M., 2008. Wavelet analysis of voluntary
cough sound in patients with respiratory diseases. Journal of physiology and pharmacology,
59 Suppl 6, pp.331–40. Available from: https://www.jpp.krakow.pl/journal/archive/12_08_

61

https://doi.org/10.55056/jec.679
https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.21437/Interspeech.2021-698
https://research.google.com/audioset/
https://doi.org/10.1016/bs.host.2016.07.010
https://doi.org/10.1016/bs.host.2016.07.010
https://doi.org/10.1016/j.rmed.2011.05.007
https://doi.org/10.1109/ICITEED.2018.8534807
https://doi.org/10.1016/j.compbiomed.2018.07.003
https://doi.org/10.1016/j.imu.2020.100378
https://doi.org/10.1109/GHTC.2017.8239338
https://doi.org/10.1109/GHTC.2017.8239338
https://doi.org/10.1109/ICTC46691.2019.8939769
https://doi.org/10.1109/ICTC46691.2019.8939769
https://doi.org/10.23919/FRUCT52173.2021.9435454
https://www.jpp.krakow.pl/journal/archive/12_08_s6/pdf/331_12_08_s6_article.pdf
https://www.jpp.krakow.pl/journal/archive/12_08_s6/pdf/331_12_08_s6_article.pdf


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

s6/pdf/331_12_08_s6_article.pdf.
[26] Korpáš, J., Sadloňová, J. and Vrabec, M., 1996. Analysis of the Cough Sound: an Overview.

Pulmonary Pharmacology, 9(5), pp.261–268. Available from: https://doi.org/10.1006/pulp.
1996.0034.

[27] Kumar, A. and Ithapu, V.K., 2020. A sequential self teaching approach for improving
generalization in sound event recognition. Proceedings of the 37th International Conference
on Machine Learning. JMLR.org, ICML’20. Available from: https://proceedings.mlr.press/
v119/kumar20a/kumar20a.pdf.

[28] Laguarta, J., Hueto, F. and Subirana, B., 2020. COVID-19 Artificial Intelligence Diagnosis
Using Only Cough Recordings. IEEE Open Journal of Engineering in Medicine and Biology,
1, pp.275–281. Available from: https://doi.org/10.1109/OJEMB.2020.3026928.

[29] Malviya, A., Dixit, R., Shukla, A. and Kushwaha, N., 2023. Long Short-Term Memory-based
Deep Learning Model for COVID-19 Detection using Coughing Sound. SN Computer
Science, 4, pp.1–12. Available from: https://doi.org/10.1007/s42979-023-01934-7.

[30] Matos, S., Birring, S., Pavord, I. and Evans, H., 2006. Detection of cough signals in
continuous audio recordings using hidden Markov models. IEEE Transactions on Biomedical
Engineering, 53(6), pp.1078–1083. Available from: https://doi.org/10.1109/TBME.2006.
873548.

[31] Melek, M., 2021. Diagnosis of COVID-19 and Non-COVID-19 Patients by Classifying Only
a Single Cough Sound. Neural Computing and Applications, 24, pp.17621–17632. Available
from: https://doi.org/10.1007/s00521-021-06346-3.

[32] Melek, N., 2022. Identifying COVID-19 by using spectral analysis of cough recordings:
a distinctive classification study. Cognitive Neurodynamics, 16, pp.1–15. Available from:
https://doi.org/10.1007/s11571-021-09695-w.

[33] Nanni, L., Maguolo, G., Brahnam, S. and Paci, M., 2021. An Ensemble of Convolutional
Neural Networks for Audio Classification. Applied Sciences, 11(13). Available from: https:
//doi.org/10.3390/app11135796.

[34] Nemati, E., Rahman, M.M., Nathan, V., Vatanparvar, K. and Kuang, J., 2020. A Compre-
hensive Approach for Classification of the Cough Type. 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp.208–212.
Available from: https://doi.org/10.1109/EMBC44109.2020.9175345.

[35] OSF | Dataset of sounds of symptoms associated with respiratory sickness Wiki, 2018.
Available from: https://osf.io/tmkud/wiki/home/.

[36] Piczak, K.J., 2015. ESC: Dataset for Environmental Sound Classification. Proceedings of
the 23rd ACM International Conference on Multimedia. New York, NY, USA: Association
for Computing Machinery, MM ’15, p.1015–1018. Available from: https://doi.org/10.1145/
2733373.2806390.

[37] Polikar, R., 2006. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, 6(3), pp.21–45. Available from: https://doi.org/10.1109/MCAS.2006.1688199.

[38] Respiratory System: Functions, Facts, Organs & Anatomy, 2024. Available from: https:
//my.clevelandclinic.org/health/body/21205-respiratory-system.

[39] Rudraraju, G., Palreddy, S., Mamidgi, B., Sripada, N.R., Sai, Y.P., Vodnala, N.K. and Haranath,
S.P., 2020. Cough sound analysis and objective correlation with spirometry and clinical
diagnosis. Informatics in Medicine Unlocked, 19, p.100319. Available from: https://doi.org/

62

https://www.jpp.krakow.pl/journal/archive/12_08_s6/pdf/331_12_08_s6_article.pdf
https://doi.org/10.55056/jec.679
https://www.jpp.krakow.pl/journal/archive/12_08_s6/pdf/331_12_08_s6_article.pdf
https://doi.org/10.1006/pulp.1996.0034
https://doi.org/10.1006/pulp.1996.0034
https://proceedings.mlr.press/v119/kumar20a/kumar20a.pdf
https://proceedings.mlr.press/v119/kumar20a/kumar20a.pdf
https://doi.org/10.1109/OJEMB.2020.3026928
https://doi.org/10.1007/s42979-023-01934-7
https://doi.org/10.1109/TBME.2006.873548
https://doi.org/10.1109/TBME.2006.873548
https://doi.org/10.1007/s00521-021-06346-3
https://doi.org/10.1007/s11571-021-09695-w
https://doi.org/10.3390/app11135796
https://doi.org/10.3390/app11135796
https://doi.org/10.1109/EMBC44109.2020.9175345
https://osf.io/tmkud/wiki/home/
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1109/MCAS.2006.1688199
https://my.clevelandclinic.org/health/body/21205-respiratory-system
https://my.clevelandclinic.org/health/body/21205-respiratory-system
https://doi.org/10.1016/j.imu.2020.100319
https://doi.org/10.1016/j.imu.2020.100319


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

10.1016/j.imu.2020.100319.
[40] Schapire, R., 1990. The Strength of Weak Learnability. Machine Learning, 5(2), pp.197–227.

Available from: https://doi.org/10.1023/A:1022648800760.
[41] Sharma, G., Umapathy, K. and Krishnan, S., 2022. Audio texture analysis of COVID-19

cough, breath, and speech sounds. Biomedical Signal Processing and Control, 76, p.103703.
Available from: https://doi.org/10.1016/j.bspc.2022.103703.

[42] Shastry, K.A., Sanjay, H. and Deexith, G., 2017. Quadratic-radial-basis-function-kernel
for classifying multi-class agricultural datasets with continuous attributes. Applied Soft
Computing, 58, pp.65–74. Available from: https://doi.org/10.1016/j.asoc.2017.04.049.

[43] Shi, Y., Li, Y., Cai, M. and Zhang, X.D., 2019. A Lung Sound Category Recognition Method
Based on Wavelet Decomposition and BP Neural Network. Int J Biol Sci, 15, pp.195–207.
Available from: https://doi.org/10.7150/ijbs.29863.

[44] Shin, S.H., Hashimoto, T. and Hatano, S., 2009. Automatic Detection System for Cough
Sounds as a Symptom of Abnormal Health Condition. IEEE Transactions on Information
Technology in Biomedicine, 13(4), pp.486–493. Available from: https://doi.org/10.1109/TITB.
2008.923771.

[45] Simou, N., Stefanakis, N. and Zervas, P., 2021. A Universal System for Cough Detection in
Domestic Acoustic Environments. 2020 28th European Signal Processing Conference (EU-
SIPCO). pp.111–115. Available from: https://doi.org/10.23919/Eusipco47968.2020.9287659.

[46] Smith, J., Ashurst, H., Jack, S., Woodcock, A. and Earis, J., 2006. The description of cough
sounds by healthcare professionals. Cough (London, England), 2, p.1. Available from:
https://doi.org/10.1186/1745-9974-2-1.

[47] Stanley, A. and Kucera, J., 2021. Smart Healthcare Devices and Applications, Machine
Learning-based Automated Diagnostic Systems, and Real-Time Medical Data Analytics in
COVID-19 Screening, Testing, and Treatment. American Journal of Medical Research, 8(2),
p.105–117. Available from: https://doi.org/10.22381/ajmr8220218.

[48] Swarnkar, V., Abeyratne, U., Chang, A., Amrulloh, Y., Setyati, A. and Triasih, R., 2013.
Automatic Identification of Wet and Dry Cough in Pediatric Patients with Respiratory
Diseases. Annals of Biomedical Engineering, 41, p.1016–1028. Available from: https:
//doi.org/10.1007/s10439-013-0741-6.

[49] Vatanparvar, K., Nemati, E., Nathan, V., Rahman, M.M. and Kuang, J., 2020. CoughMatch
– Subject Verification Using Cough for Personal Passive Health Monitoring. 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). pp.5689–5695. Available from: https://doi.org/10.1109/EMBC44109.2020.9176835.

[50] Viitaniemi, V., Sjöberg, M., Koskela, M., Ishikawa, S. and Laaksonen, J., 2015. Chapter 12 -
Advances in visual concept detection: Ten years of TRECVID. In: E. Bingham, S. Kaski,
J. Laaksonen and J. Lampinen, eds. Advances in Independent Component Analysis and
Learning Machines. Academic Press, pp.249–278. Available from: https://doi.org/10.1016/
B978-0-12-802806-3.00012-9.

[51] Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J.,
Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J. and Steinberg, D., 2007.
Top 10 algorithms in data mining. Knowl. Inf. Syst., 14(1), p.1–37. Available from: https:
//doi.org/10.1007/s10115-007-0114-2.

[52] Xin, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S. and Pan, T., 2022. Online rein-

63

https://doi.org/10.1016/j.imu.2020.100319
https://doi.org/10.55056/jec.679
https://doi.org/10.1016/j.imu.2020.100319
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.1016/j.bspc.2022.103703
https://doi.org/10.1016/j.asoc.2017.04.049
https://doi.org/10.7150/ijbs.29863
https://doi.org/10.1109/TITB.2008.923771
https://doi.org/10.1109/TITB.2008.923771
https://doi.org/10.23919/Eusipco47968.2020.9287659
https://doi.org/10.1186/1745-9974-2-1
https://doi.org/10.22381/ajmr8220218
https://doi.org/10.1007/s10439-013-0741-6
https://doi.org/10.1007/s10439-013-0741-6
https://doi.org/10.1109/EMBC44109.2020.9176835
https://doi.org/10.1016/B978-0-12-802806-3.00012-9
https://doi.org/10.1016/B978-0-12-802806-3.00012-9
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2


Journal of Edge Computing, 2024, 3(1), pp. 43-64 https://doi.org/10.55056/jec.679

forcement learning multiplayer non-zero sum games of continuous-time Markov jump
linear systems. Applied Mathematics and Computation, 412, p.126537. Available from:
https://doi.org/10.1016/j.amc.2021.126537.

[53] Xu, Y., Cao, X. and Qiao, H., 2011. An Efficient Tree Classifier Ensemble-Based Approach
for Pedestrian Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 41(1), pp.107–117. Available from: https://doi.org/10.1109/TSMCB.2010.
2046890.

[54] Xu, Z., Li, X. and Stojanovic, V., 2021. Exponential stability of nonlinear state-dependent
delayed impulsive systems with applications. Nonlinear Analysis: Hybrid Systems, 42,
p.101088. Available from: https://doi.org/10.1016/j.nahs.2021.101088.

[55] Zhang, X., Wang, H., Stojanovic, V., Cheng, P., He, S., Luan, X. and Liu, F., 2022. Asyn-
chronous Fault Detection for Interval Type-2 Fuzzy Nonhomogeneous Higher Level Markov
Jump Systems With Uncertain Transition Probabilities. IEEE Transactions on Fuzzy Systems,
30(7), pp.2487–2499. Available from: https://doi.org/10.1109/TFUZZ.2021.3086224.

[56] Zhuang, Z., Tao, H., Chen, Y., Stojanovic, V. and Paszke, W., 2022. Iterative learning control
for repetitive tasks with randomly varying trial lengths using successive projection. Inter-
national Journal of Adaptive Control and Signal Processing, 36(5), pp.1196–1215. Available
from: https://doi.org/10.1002/acs.3396.

64

https://doi.org/10.55056/jec.679
https://doi.org/10.1016/j.amc.2021.126537
https://doi.org/10.1109/TSMCB.2010.2046890
https://doi.org/10.1109/TSMCB.2010.2046890
https://doi.org/10.1016/j.nahs.2021.101088
https://doi.org/10.1109/TFUZZ.2021.3086224
https://doi.org/10.1002/acs.3396

	1 Introduction
	2 Methods and test protocol
	2.1 Dataset
	2.2 Data processing
	2.2.1 MFCC feature extraction technique

	2.3 Sequential forward selection (SFS) as feature selection method
	2.4 Classification algorithms
	2.4.1 Nonlinear SVM and RBF kernel functions
	2.4.2 Decision tree
	2.4.3 Ensemble aggregation ``bagging'' and ``boosting''


	3 Results
	4 Discussion
	5 Conclusion
	6 Conflict of interest statement

