
Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Managing energy consumption in FPGA-based edge
computing systems with soft-core CPUs
Oleksandr V. Hryshchuk, Sergiy P. Zagorodnyuk

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, 01033, Ukraine

Abstract. Edge computing, characterized by processing data closer to its source, has
emerged as a promising paradigm to address the challenges of latency, bandwidth,
and privacy in the Internet of Things (IoT) era. At the same time, Field-Programmable
Gate Arrays (FPGAs) have gained significant attention in edge computing due to
their ability to reconfigure design, low power consumption, and high performance.
However, the energy consumption of FPGA-based edge computing systems remains
a critical concern, particularly in resource-constrained environments where power
efficiency is crucial. This paper presents an energy-efficient edge computing system
focusing on job scheduling and power management optimization. We review existing
techniques and methodologies for optimizing energy consumption in computing
systems, including FPGA-based edge devices, identify key challenges and opportuni-
ties for future enhancement and propose a flexible, low-power system design with
soft-core CPUs.

Keywords: FPGA, power monitoring, soft-core CPU, RTOS, edge computing

1. Introduction
Edge computing systems are usually defined as remote systems based on domains

of embedded systems, telecommunication, and cloud systems [19]. In the real world,
the edge can be used in the following approaches: “fog” computing, multi-access edge
(MEC), and cloudlets (for example, personal network access storage) [19]. Initially,
computing edge devices (also called programming logical controllers or PLCs) were
based on microcontrollers with hard-core central processing units (CPU), like the
RISC-based Microchip AVR ATtiny85 [4], with limited resources and flexibility. But
nowadays, field-programmable gate arrays have gained significant attraction in the
scope of computing devices for edge systems. FPGA can offer several benefits –
customizable hardware acceleration allows to optimize performance for case-specific
applications; FPGA can process data with extremely low latency, which can be crucial
in autonomous vehicles [1], industrial automation, aerospace engineering [30] and
other fields where timely decision-making is essential for safety and efficiency. FPGA
chip allows reconfiguring a device without requiring physical hardware changes,
enabling edge devices to stay relevant and efficient over time. At the same time, FPGAs
are highly power-efficient compared to general-purpose processors like CPUs and
graphics processing units (GPU) when performing specific tasks [23].

Increasing the variety and amount of computing systems causes significant energy
consumption growth. For example, nowadays, commercial data centres consume
200 TWh yearly, while an entire set of computing devices contributes 2% of the total
carbon emissions in the world [16]. According to estimates, in 2030, IT resources
will utilize 8% of the whole power supply in the world (or up to 51% in the forecast
for the worst-case scenario) [3]. The prospect of heightened power consumption
and, subsequently, increased computing costs prompts researchers and engineers to

� 0009-0007-9926-4231 (O. V. Hryshchuk); 0000-0003-3415-7746 (S. P. Zagorodnyuk)
% oleksandr_hryshchuk@knu.ua (O. V. Hryshchuk); szagorodniuk@gmail.com (S. P. Zagorodnyuk)

© Copyright for this article by its authors, published by the Academy of Cognitive and Natural Sciences.
This is an Open Access article distributed under the terms of the Creative Commons License Attribution
4.0 International (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

57

https://doi.org/10.55056/jec.717
https://orcid.org/0009-0007-9926-4231
https://orcid.org/0000-0003-3415-7746
mailto:oleksandr_hryshchuk@knu.ua
mailto:szagorodniuk@gmail.com
https://acnsci.org/jec
https://creativecommons.org/licenses/by/4.0/deed.en
https://acnsci.org

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

explore and devise novel methods and strategies for optimizing power management in
various computing systems, including edge devices.

There is a set of approaches to increase efficiency in FPGA applications in various
domains – from low-end FPGAs for edge computing to high-end FPGAs in ultra-scale
high-performance computing (HPC) systems [7, 10, 22, 23, 32]. However, the central
part of these works is case-specific. Applications are often based on toolkits like
OpenCL [29] or oneAPI [2], which provide general and efficient solutions for high-end
(like Intel Stratix 10) devices in HPC systems, but maybe not supported for low-end
devices, used in edge computing (in example Max 10 FPGA), and vice versa there are
works on low-level implementation in hardware-description languages like Verilog or
VHDL (an example implementation of k-means algorithm on FPGA [6]).

Therefore, this paper aims to develop and evaluate the architecture of general-
purpose low-end FPGA-based edge computing systems with extended power consump-
tion management capabilities.

The paper is structured as follows: section 2 reviews state-of-art power management
solutions in computing systems with FPGA accelerators and defines the problem of
energy-efficient scheduling to provide generalized power consumption optimization.
Section 3 describes the architecture of the proposed system and the experimental
setup for its evaluations. Section 4 discusses obtained results, including system
limitations and future work. Section 5 concludes this paper.

2. Theoretical background
2.1. Power management in FPGA-based computing systems

In FPGA chips, separate nodes distribute power consumption, which is divided into
the following FPGA sub-element categories: logic cells, interconnect network, clock
buffer, and embedded memory [9].

Internal elements such as logical cells and programmable wires consume over 80%
of the energy supplied to the chip. These resources can be used in different ways,
such as optimizing the reconfiguration process and minimizing route paths, to manage
and save power.

Moreover, case-specific or generalized FPGA-based edge computing systems can be
applied to typical power management methods in computing systems. Classification
of the mentioned techniques was proposed in [11] and depicted in figure 1. Two
main classes define all methods – static power management (SPM) and dynamic
power management (DPM). From the FPGA point of view, designers apply static power
management methods during the device reconfiguration stage. For example, the Intel
Quartus Prime software suite provides an Early Power Estimator and Power Analyzer
(available only in the post-fit stage) [15], which helps to achieve various thermal or
power optimization goals.

Power
management

Dynamic power
management

Dynamic compo-
nent deactivation

Dynamic
power scaling

Static power
management

Hardware level Software level

Figure 1: General classification of power management methods in computer systems.

58

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Dynamic methods are divided into two main groups — dynamic component deactiva-
tion (DCD), which are based on predictive or heuristic approaches, and dynamic power
scaling (DPS), for example, resource throttling and dynamic voltage and frequency
scaling (DVFS) [13, 14]. The mentioned method serves as a base for more sophisticated
optimization techniques, such as task scheduling based on DVFS [26] or the DCD
heuristics solution, which is utilized in the HPC domain [17].

The approaches presented in this section can be applied to different hardware
platforms. For example, it can be homogeneous or heterogeneous (with GPU, TPU,
FPGA) HPC systems or IoT soft-core and hard-core hardware solutions, including edge
computing devices. Soft-core CPUs allow developers to use them as the foundation for
software solutions without overhead in hardware implementation. At the same time,
Micro-C RTOS provides a simple and easy-to-use task scheduler with opportunities to
optimize it. In this paper, we propose to use an FPGA-based edge computing system
with soft-core CPU NIOS II and Micro-C RTOS.

2.2. Task scheduling in RTOS
Edge computing devices are often part of real-time systems, so we chose Micro-C

RTOS as an operating system for the proposed FPGA-based edge computing system.
Successful task completion is crucial and mandatory in real-time systems because of
safety-critical requirements. To fulfil this necessity, RTOS utilize simple but reliable
scheduling policies, like rate-monotonic scheduling (RMS), which is used in Micro-C
RTOS [18].

Rate-monotonic scheduling has the following requirements:

1. Tasks do not use any synchronization or shared resources (like hardware re-
sources of a semaphore blocker)

2. Tasks are periodic
3. Only static prioritization is used and assigned in compliance with rate-monotonic

conventions

Initially, all deadlines in rate-monotonic scheduling must satisfy the following
criteria:

𝑈 =
𝑛∑︁

𝑖=1

𝐶𝑖

𝑇𝑖
≤ 𝑛(21/𝑛 − 1) (1)

where 𝑛 is the number of tasks (process) to be scheduled, 𝐶𝑖 and 𝑇𝑖 are computation
time and release period for task 𝑖, and 𝑈 corresponds to total CPU utilization by
scheduled tasks [18, 20]. This condition provides CPU utilization from 83% for
two tasks and to ≈69% when the task number goes to infinity (𝑈 ≤ ln 2 for 𝑛 →
∞). Scheduling criteria and policy can be extended and optimized for multi-core
scenarios [21] or include energy consumption criteria, described in the following
section.

By default Micro-C/OS-II provides the following options for scheduling [18]:

1. Up to 64 tasks (4 tasks with the highest priority and 4 with the lowest are
reserved), 56 of them available for application

2. The lower value of the priority field means the highest priority of the task
3. Task priority number used as task identifier

2.3. Problem definition for energy-efficient scheduling
Power consumption optimization techniques can be classified as hardware and

software-based. Hardware-based methods are case-specific for different hardware
variations, such as the CPU. Software-based techniques can be generalized and
provide a solution for various hardware devices with common characteristics, such as

59

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

homogeneous or heterogeneous HPC systems with GPU and TPU accelerators [24]. In
the scope of this paper, we focused on software solutions that lead to energy-efficient
task-scheduling methods.

Optimization problem energy consumption via task scheduling can be defined as
finding a set of start times {𝑠1, 𝑠2, . . . , 𝑠|𝐽 |} for jobs from a finite set of tasks 𝐽 , allocated
to resources {𝑎1, 𝑎2, . . . , 𝑎|𝐽 |} using a finite set of resources 𝑅 in conditions where:

∀𝑠𝑥 : ∄𝑠𝑦 : 𝑠𝑥 ≤ 𝑠𝑦 + time (𝑦,𝐴𝑦) ∧ 𝑠𝑦 ≤ 𝑠𝑥 + time (𝑥,𝐴𝑥) ∧ 𝑎𝑥 = 𝑎𝑦,∀𝑎𝑥 : 𝑥 ∈ 𝑅 (2)

where 𝑡𝑖𝑚𝑒(𝑗, 𝑟) is the function for calculating job execution duration.
Optimization criteria for the mentioned problem will be finding the maximum or

minimum (depending on a function that uses simple metrics such as execution time,
consumed energy, resource usage, etc.) [17].

min /max
(︀

OptimizationCriteria
(︀{︀

𝑠1, 𝑠2, . . . , 𝑠|𝐽 |
}︀
,
{︀
𝑎1, 𝑎2, . . . , 𝑎|𝐽 |

}︀)︀)︀
(3)

The described problem definition has several disadvantages – an assumption that
one resource can take only one task at a time and the fact that the count of available
resources is always equal to or higher than the number of jobs to complete and does
not include the impact of communication between tasks on nodes or computing ele-
ments. Micro-C/OS-II RTOS provides inter-process communication (IPC) functionality.
Therefore, it is essential to mitigate these issues in embedded computing systems.
Resolution of these issues and adapted and upgraded model was suggested [17] –
for two tasks 𝑥 and 𝑦 from a set of jobs pairs 𝐷, 𝑃𝑗 is a set of devices, which can
be assigned for job 𝑗 ∈ 𝐽, time of communication between jobs obtained from func-
tion 𝑐𝑜𝑚𝑚(𝑥, 𝑦, 𝑎𝑥, 𝑎𝑦), then the solution is a set of assignments 𝐴𝑗 and start times
{𝑠1, 𝑠2, . . . , 𝑠|𝐽 |} for each job as it described in equations 4-7:

∀𝑥 ∈ 𝐴𝑗 : 𝑥 ∈ 𝑃𝑗 (4)

∀𝑠𝑥 : ∄𝑠𝑦 : 𝑠𝑥 ≤ 𝑠𝑦 + time (𝑦,𝐴𝑦) ∧ 𝑠𝑦 ≤ 𝑠𝑥 + time (𝑥,𝐴𝑥) ∧𝐴𝑥 ∩𝐴𝑦 = ∅ (5)

∀{𝑥, 𝑦} ∈ 𝐷 : 𝑠𝑥 + time (𝑥,𝐴𝑥) + comm(𝑥, 𝑦,𝐴𝑥, 𝐴𝑦) ≤ 𝑠𝑦 (6)

With optimization condition:

min /max
(︀

OptimizationCriteria
(︀{︀

𝑠1, 𝑠2, . . . , 𝑠|𝐽 |
}︀
, 𝐴1, . . . , 𝐴|𝐽 |, 𝐷

)︀)︀
(7)

Enumeration over the entire set of jobs for the entire set of available resources
means that solution time can not be found in reasonable polynomial time, which was
for energy-efficient active time as NP-complete scheduling [5]. To find the solution
for this problem in a reasonable time before starting (in the case of static scheduling)
or during runtime, precalculated configurations or heuristic methods, for example,
genetic algorithms [8], can be used.

Another essential point in this definition is the selection of optimization criteria for
specific edge-computing system cases. Existing solutions use energy consumption
metric (EC) or can take under consideration other properties, such as execution
time [17]. Energy consumption can be described via energy itself (in joules/watts)
or depicted via more complicated parameters like instruction per joule or power per
Watt [25]. For example, this approach is used in the Green500 rating as the FLOPS
per Watt metric [27]. Improved or adapted parameters can be used as a combination
of metrics such as energy consumption, execution time, utilization, average weighted
time (AWT), wait time, power, Pareto front, AST, AFT, clock frequency, task(job)
per energy, reliability, electricity cost, temperature, EDP, EDF, number of cores,
probability of execution, branch transition rate, cache efficiency, issue width [17]. Due
to implementation transparency, we used energy (consumed by the testbed board) as
the key metric in our proof of concept system.

60

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

3. Edge computing system architecture
The suggested edge computing system consists of several key components – user

and task scheduler services (physically located on a single management server), edge
agent, power monitor, and FPGA per each testbed setup. User service acts as an
interface between end-users and the computing system and is responsible for handling
user requests and managing job submissions. The scheduler service is responsible
for resource allocation and workload distribution optimization (using power monitor
agent output). Edge Agent facilitates communication between the scheduler and target
edge hardware and performs FGPA reconfiguration when required. The FPGA board
is designated for hardware acceleration for computationally intensive operations and
is used as this paper’s primary target for power profiling. The block diagram of the
suggested architecture is shown in figure 2.

Figure 2: Edge computing system architecture.

After the “power on” event, the user service requests the scheduler to begin the
initialization process and bring up the required services. The suggested design can
support soft-core IP blocks (like NIOS II CPU); in this case, the edge agent will provision
the soft-core SoC (system-on-chip) design in the alternative stage of initialization flow
(detailed process depicted in figure 3).

When the system is ready, the end user can submit the job for execution to the
task scheduler service. The scheduler acknowledges job requests and performs FPGA
reconfiguration when required. When the FPGA chip is ready, the scheduler will send
a job initialization request to the FPGA and request that the power monitor start the
power consumption measurement. Following the acknowledgement response, the
scheduler will begin data exchange with the target with FPGA (due to the limitation of
onboard memory, frequent data exchange is mandatory for extensive jobs). It will read
measurements from the power monitor. The scheduler will forward the results to the
end user when the job is done. The complete task execution flow is shown in figure 4.
The described process requires edge agent involvement only for FPGA reconfiguration,
not for computing load.

3.1. Experimental setup
Hardware implementation is based on the Intel Max 10 FPGA chip on the Terasic

DE10 Lite board. To create server-platform architecture (where the host PC is used
for FPGA programming and sending tasks to the FPGA computing node), we used a
Wiznet W5100 chip on an Ethernet shield from Keyestudio. An edge computing system
was implemented using Intel Quartus Platform Designer and Nios II soft-core CPU. A
created computer consists of onboard clock source for 50 MHz clock (clk_50), ALTPLL

61

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 3: FPGA computing agent initialization flow.

Intel FPGA IP-block (altpll) used to multiply input clock to be able to work on higher
frequency, system ID, interval timer IP block for interrupt sender, SDRAM controller IP
block for RAM, PIO for push button on board (key), RISC-based Nios II processor and
existing IP block for W5100 controller [12], created architecture depicted on figure 5
and figure 6.

Both the host and FPGA were connected to the same local network, and static
IP addresses were assigned for both devices. TCP sockets were used to enable
communication between the host and board and send computing tasks. The power-to-
edge device was supplied via a USB interface, which was also used for programming
and debugging via the JTAG interface (initialization output from Nios console shown
in figure 7 using an onboard USB blaster).

A FNB 58 USB tester was used for energy consumption monitoring, capture from the
tester shown in figure 8, the tested device, and the tester itself shown in figure 9. An
overview of the implemented testbed system architecture (including key components
and connection interfaces) is shown in figure 10.

The suggested architecture was configured using Platform Designer from Intel
Quartus Prime Lite and shown in figure 6. All parts of this computing system
were connected via Avalon Bus for system interconnect and were connected to
nios2_qsys.data_master and nios2_qsys.instruction_master. The address
map for the current configuration is displayed in table 1.

62

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 4: Job execution flow.

Figure 5: Suggested architecture of edge computing system.

Register transfer level view of the top entity with a connection to board input and
output pins (including GPIO) shown in figure 11. A default factory reset configuration
for DE10_Lite was used to simplify HDL development. For this reason, some unused
pins exist, like ADC_CLK_10, GSENSOR_INT, MAX10_CLK_10, etc. These pins may be
used to connect peripheral devices and sensors. As a result, the current setup utilized

63

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 6: Platform Designer configuration for suggested architecture.

only 10% of the available logical elements inside the FPGA chip (detailed report from
compilation in table 2). The rest of the logical resources can be used to create a
multi-core setup or evaluate other soft-core CPUs.

3.2. Advantages and disadvantages of the suggested architecture
The proposed setup provides several benefits for users and researchers. As advan-

tages, the following points can be emphasized:

64

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 7: Device initialization output.

Figure 8: Supplied current and voltage levels, measured on USB for 21 minutes.

(a) (b)

Figure 9: Photo of connected edge device (a), Fnirsi FNB 58 USB tester.

• The usage of FPGA provides incredible flexibility for various tasks in edge com-
puting.

• Using a soft-core CPU alongside RTOS allows using a single HDL configuration
for numerous applications with an easy-to-use Micro-C/OS-II advanced binary
interface (ABI).

• Easy-to-use energy consumption monitoring via an external USB tester.
• RTOS provides a simple scheduler that can be optimized or replaced with ad-

vanced techniques, focusing on energy saving.

At the same time, the developed system has several disadvantages that can be
mitigated:

• Wiznet Ethernet to SPI controller limits data transmission speed to 10 Mb/s,
which may be fine for reading and handling information from low-speed peripheral

65

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 10: General architecture of implemented testbed system.

Table 1
Address map in implemented setup.

nios2_qsys.data_master

sdram.s1 0x0200_0000 - 0x0300_0fff
nios2_qsys.debug_mem_slave 0x0400_0800 - 0x0400_0fff
timer.s1 0x0400_1000 - 0x0400_101f
ethernet_wiznet_5100.avalon_slave_0 0x0400_1020 - 0x0400_103f
key.s1 0x0400_1040 - 0x0400_104f
altpll.pll_slave 0x0400_1050 - 0x0400_105f
sysid_qsys.control_slave 0x0400_1060 - 0x0400_1067
jtag_uart.avalon_jtag_slave 0x0400_1068 - 0x0400_106f

nios2_qsys.instruction_master

sdram.s1 0x0200_0000 - 0x03ff_0fff
nios2_qsys.debug_mem_slave 0x0400_0800 - 0x0400_0fff

Table 2
Parameters of compiled design.

Parameter name Parameter value

Total logical elements 5036/49760 (10%)
Total PLL 1/4
Total pins 180/360 (51%)
Minimum core junction temperature 0 ∘C
Maximum core junction temperature 85 ∘C
Device I/O Standard 2.5 V
𝐹𝑚𝑎𝑥 (1200 mV 85 ∘C Slow model) 130.17 MHz
𝐹𝑚𝑎𝑥 (1200 mV 0 ∘C Slow model) 141,2 MHz

devices, such as temperature sensors, keyboards, GPIO, etc. Still, it will not
suit a high-load fast application. Complex Ethernet components with proprietary
Qsys IP blocks can be onboarded, providing a communication speed of up to
1 Gb/s for Max 10 devices to mitigate the low-speed issue.

• The power supply via USB cable is acceptable for the current prototype but can
be replaced with an external 5V power supply connected to the 5V/GND header.

• The current implementation uses Wiznet 5100 on the Arduino header, which
leads to additional energy dissipation on LEDs for status indicators on board. In

66

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 11: Schematic for implemented edge computing device.

Figure 12: RTL view of configured FPGA.

the future, it can be replaced with a simplified Ethernet module.

We suggested use of simple matrix multiplication as load task for edge device,
which can be used as a base for more complex functions like neural networks, image
processing, etc. We used the C++ program for this task, which was compiled for
Micro-C/OS-II RTOS and executed on the Nios II processor.

4. Results and discussion
Several experiments were conducted to evaluate energy consumption in the pro-

posed system. The task was executed 20 times with different matrix sizes and clock
frequencies. The size of measured matrices varies from 1.6 · 105 (5.12 MB) to 106

67

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

(30 MB) elements. The frequency was set to 50, 80, and 100 MHz. As expected, energy
consumption grows with the increase of matrix size and frequency decrease. For power
consumption, we observed the lowest consumption for 50 MHz and the highest for 80
and 100 MHz. However, the difference between 80 and 100 MHz is not significant (in
the range of 0.03 W). Measurements for higher frequencies were not conducted due to
the limitation of PLL configuration and 𝐹𝑚𝑎𝑥 of 141.2 MHz for the current design. The
received data does not include energy consumption on the host PC and networking
equipment. Collected data is shown in the table 3. An example of measured data of
energy and power consumption of 700x700 matrix multiplication on a 100 MHz clock
is shown in figure 14.

Obtained results can be compared with related works, such as power and energy
consumption modelling on NIOS II in [28] on Arria II GX and Cyclone III LS. The
average power measured in our experiments is 90% higher than shown in [28],
which is expected due to two different measurement methodologies and load tasks.
Measurements described in this paper include not only FPGA chip power consumption
but the entire board (including the connected W5100 chip, which can dissipate up
to 0.3 watts). Another example is a case of FPGA-based edge computing, described
in [31], with a computer vision application confirming significant power consumption
optimization with a 15% power save compared to regular CPU load.

(a) (b)

Figure 13: Energy (a) and power (b) consumption for different frequencies.

4.1. Limitations
From our obtained results, comparison with related works, and methodology defini-

tion, we identified the following limitations:

• Low-speed (10 Mb/s) Ethernet connection with high power dissipation on SPI to
Ethernet chip is a bottleneck for high-load applications.

• The suggested design supports CPU frequency only up to 100 MHz
• Lack of isolated measurements – only whole board power consumption is moni-

tored.
• Single-core CPU design utilizes only 10% of available logical elements (table 2).
• Default preemptive scheduling has limited flexibility.

4.2. Future work
Limitations, described in the previous subsection, define possible areas of improve-

ment and future work. It will include the replacement of the SPI to Ethernet controller

68

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

Figure 14: Current, voltage, and power consumption of 700x700 integer matrix multiplication
on 100 MHz clock.

Table 3
Energy and power consumption for different frequencies and sample sizes (the size of each
element in the sample is 32 bits).

Frequency,
MHz

Sample
size

Time,
s

Power min,
W

Power max,
W

Power avg,
W

Energy,
Wh

50.00

160000 225.60 1.56343 1.59797 1.5807 0.02522
250000 433.70 1.56255 1.59785 1.5802 0.04927
360000 752.00 1.542 1.60083 1.571415 0.08435
490000 1184.00 1.56225 1.59878 1.580515 0.13283
640000 1804.00 1.56213 1.59939 1.58076 0.2
810000 2548.00 1.56216 1.59897 1.580565 0.29432

80.00

160000 141.10 1.62501 1.66578 1.645395 0.10808
250000 271.40 1.62362 1.66714 1.64538 0.0333
360000 470.30 1.62406 1.66797 1.646015 0.05457
490000 740.80 1.64005 1.67011 1.65508 0.08521
640000 1128.90 1.64414 1.67543 1.659785 0.12931
810000 1594.70 1.64129 1.67297 1.65713 0.18262

1000000 2173.70 1.62696 1.67351 1.650235 0.25262

100.00

160000 112.60 1.56074 1.6981 1.62942 0.01394
250000 216.40 1.57307 1.70668 1.639875 0.02592
360000 375.20 1.6054 1.70673 1.656065 0.04387
490000 590.60 1.57427 1.70655 1.64041 0.06954
640000 900.30 1.60133 1.70407 1.6527 0.10394
810000 1271.20 1.607 1.70423 1.655615 0.14769

1000000 1733.40 1.55591 1.70671 1.63131 0.20045

with the high-speed interface and FPGA resource utilization expansion (for example,
with a multi-core CPU design). Integrating advanced scheduling algorithms. The
important point is expanding the test base with tasks like the Dhrystone benchmark
used in [28]. Also, the edge network will be expanded with various computing devices
of different CPU architectures.

69

https://doi.org/10.55056/jec.717

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

5. Conclusions
This paper describes modern energy consumption management and optimization

methods in FPGA-based edge computing systems, focusing on job scheduling.
The architecture of general-purpose low-end FPGA-based edge computing systems

with extended power consumption management capabilities was proposed and evalu-
ated. The developed system, described in this paper, provides flexibility for configura-
tion by utilizing soft-core CPUs and custom case-specific IP blocks. Programs designed
for the mentioned processors can be easily ported to another device or device family or
vendor. At the same time, the developed configuration shows low energy consumption
(for example, 1.86 Watt, shown in figure 9 (b)), which satisfies requirements for edge
devices. Therefore, this system can be used as a foundation for more complex but
energy-efficient edge computing solutions in various domains, including hard and soft
real-time systems, artificial intelligence applications, and others.

Matrix multiplication conducted for 50, 80, and 100 MHz clock frequencies for
sample sizes from 1 MB to 30 MB is suitable as a benchmark for suggested architec-
ture evaluations; however, additional extended test methods, such as the Dhrystone
benchmark, are required for better comparison with existing solutions. Energy con-
sumption measurements showed that the proposed system could be used as a testbed
for research on energy-efficient edge systems.

Declaration on generative AI: The authors have not employed any generative AI tools.

References
[1] Aishwarya, G., Patil, B., Joshi, P.V., Sudarsham, K.M., Vaidyanathan, K.,

Parandkar, P. and Dsouza, A., 2022. A Survey on use of FPGA in Automo-
tive System. 2022 International Conference on Distributed Computing, VLSI,
Electrical Circuits and Robotics (DISCOVER). pp.51–56. Available from: https:
//doi.org/10.1109/DISCOVER55800.2022.9974941.

[2] Alcaraz, S.R., Laso, R., Lorenzo, O.G., Vilariño, D.L., Pena, T.F. and Rivera,
F.F., 2024. Assessing Intel OneAPI capabilities and cloud-performance for het-
erogeneous computing. The Journal of Supercomputing, 80(9), p.13295–13316.
Available from: https://doi.org/10.1007/s11227-024-05958-5.

[3] Andrae, A.S.G. and Edler, T., 2015. On global electricity usage of communication
technology: Trends to 2030. Challenges, 6(1), pp.117–157. Available from:
https://doi.org/10.3390/challe6010117.

[4] ATtiny85, 2024. Available from: https://www.microchip.com/en-us/product/
attiny85.

[5] Chang, J., Gabow, H.N. and Khuller, S., 2012. A Model for Minimizing Active
Processor Time. In: L. Epstein and P. Ferragina, eds. Algorithms – ESA 2012.
Springer, Lecture Notes in Computer Science, vol. 7501, pp.289–300. Available
from: https://doi.org/10.1007/978-3-642-33090-2_26.

[6] Dias, L.A., Ferreira, J.C. and Fernandes, M.A.C., 2020. Parallel Implementation
of K-Means Algorithm on FPGA. IEEE Access, 8, pp.41071–41084. Available from:
https://doi.org/10.1109/ACCESS.2020.2976900.

[7] Favaro, F., Dufrechou, E., Ezzatti, P. and Oliver, J.P., 2021. Energy-Efficient
Algebra Kernels in FPGA for High Performance Computing. Journal of Computer
Science and Technology, 21(2), pp.80–92. Available from: https://doi.org/10.
24215/16666038.21.e09.

[8] Fernández, A. Cocaña, Ranilla, J. and Sánchez, L., 2015. Energy-efficient
allocation of computing node slots in HPC clusters through parameter learning
and hybrid genetic fuzzy system modeling. Journal of Supercomputing, 71(3),
pp.1163–1174. Available from: https://doi.org/10.1007/s11227-014-1320-9.

70

https://doi.org/10.55056/jec.717
https://doi.org/10.1109/DISCOVER55800.2022.9974941
https://doi.org/10.1109/DISCOVER55800.2022.9974941
https://doi.org/10.1007/s11227-024-05958-5
https://doi.org/10.3390/challe6010117
https://www.microchip.com/en-us/product/attiny85
https://www.microchip.com/en-us/product/attiny85
https://doi.org/10.1007/978-3-642-33090-2_26
https://doi.org/10.1109/ACCESS.2020.2976900
https://doi.org/10.24215/16666038.21.e09
https://doi.org/10.24215/16666038.21.e09
https://doi.org/10.1007/s11227-014-1320-9

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

[9] Garcia, A.D.G., Perez, L.F.G. and Acuna, R.F., 2005. Power consumption
management on FPGA. 15th International Conference on Electronics, Com-
munications and Computers (CONIELECOMP’05). pp.240–245. Available from:
https://doi.org/10.1109/CONIEL.2005.60.

[10] Goel, A., Goel, A.K. and Kumar, A., 2023. Performance analysis of multiple
input single layer neural network hardware chip. Multimedia Tools and Ap-
plications, 82(18), pp.28213–28234. Available from: https://doi.org/10.1007/
s11042-023-14627-3.

[11] Haj-Yahya, J., Mendelson, A., Asher, Y.B. and Chattopadhyay, A., 2018. Energy
Efficient High Performance Processors: Recent Approaches for Designing Green
High Performance Computing. Springer. Available from: https://doi.org/10.1007/
978-981-10-8554-3.

[12] Holguer, A., 2024. W5100 Qsys Component. Available from: https:
//www.fpgalover.com/index.php/component/content/article/30-cores/
39-wiznet-5100-core?Itemid=101.

[13] Ibro, M. and Marinova, G., 2020. DVFS Technique on a Zynq SoC-based System
for Low Power Consumption. 2020 International Conference on Broadband Com-
munications for Next Generation Networks and Multimedia Applications (CoBCom).
pp.1–5. Available from: https://doi.org/10.1109/CoBCom49975.2020.9174061.

[14] Ibro, M. and Marinova, G., 2021. Review on Low-Power Consumption Techniques
for FPGA-based designs in IoT technology. 2021 16th International Conference on
Telecommunications (ConTEL). pp.110–114. Available from: https://doi.org/10.
23919/ConTEL52528.2021.9495970.

[15] Intel® Quartus® Prime Standard Edition User Guide, 2018. Intel. Avail-
able from: https://www.intel.com/content/www/us/en/docs/programmable/
683230/18-1/user-guides.html.

[16] Jones, N., 2018. How to stop data centres from gobbling up the world’s elec-
tricity. Nature, 561, pp.163–166. Available from: https://doi.org/10.1038/
d41586-018-06610-y.

[17] Kocot, B., Czarnul, P. and Proficz, J., 2023. Energy-Aware Scheduling for High-
Performance Computing Systems: A Survey. Energies, 16(2), p.890. Available
from: https://doi.org/10.3390/en16020890.

[18] Labrosse, J., 2002. MicroC/OS-II: The Real Time Kernel. CRC Press.
[19] Lea, P., 2020. IoT and Edge Computing for Architects. 2nd ed. Packt Publishing

Ltd. Available from: https://books.google.com.ua/books?id=bZJ8zQEACAAJ.
[20] Liu, C.L. and Layland, J.W., 1973. Scheduling Algorithms for Multiprogramming

in a Hard-Real-Time Environment. Journal of the ACM, 20(1), p.46–61. Available
from: https://doi.org/10.1145/321738.321743.

[21] Min-Allah, N., Hussain, H., Khan, S.U. and Zomaya, A.Y., 2012. Power efficient
rate monotonic scheduling for multi-core systems. Journal of Parallel and Dis-
tributed Computing, 72(1), pp.48–57. Available from: https://doi.org/10.1016/j.
jpdc.2011.07.005.

[22] Minhas, U.I., Woods, R., Nikolopoulos, D.S. and Karakonstantis, G., 2022. Effi-
cient, Dynamic Multi-Task Execution on FPGA-Based Computing Systems. IEEE
Transactions on Parallel and Distributed Systems, 33(3), pp.710–722. Available
from: https://doi.org/10.1109/TPDS.2021.3101153.

[23] Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J. and Jones, P.H., 2019.
Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision
Kernels. 2019 IEEE International Conference on Embedded Software and Systems
(ICESS). pp.1–8. Available from: https://doi.org/10.1109/ICESS.2019.8782524.

[24] Raca, V., Umboh, S.W., Mehofer, E. and Scholz, B., 2022. Runtime and en-
ergy constrained work scheduling for heterogeneous systems. Journal of Super-

71

https://doi.org/10.55056/jec.717
https://doi.org/10.1109/CONIEL.2005.60
https://doi.org/10.1007/s11042-023-14627-3
https://doi.org/10.1007/s11042-023-14627-3
https://doi.org/10.1007/978-981-10-8554-3
https://doi.org/10.1007/978-981-10-8554-3
https://www.fpgalover.com/index.php/component/content/article/30-cores/39-wiznet-5100-core?Itemid=101
https://www.fpgalover.com/index.php/component/content/article/30-cores/39-wiznet-5100-core?Itemid=101
https://www.fpgalover.com/index.php/component/content/article/30-cores/39-wiznet-5100-core?Itemid=101
https://doi.org/10.1109/CoBCom49975.2020.9174061
https://doi.org/10.23919/ConTEL52528.2021.9495970
https://doi.org/10.23919/ConTEL52528.2021.9495970
https://www.intel.com/content/www/us/en/docs/programmable/683230/18-1/user-guides.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/18-1/user-guides.html
https://doi.org/10.1038/d41586-018-06610-y
https://doi.org/10.1038/d41586-018-06610-y
https://doi.org/10.3390/en16020890
https://books.google.com.ua/books?id=bZJ8zQEACAAJ
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/j.jpdc.2011.07.005
https://doi.org/10.1016/j.jpdc.2011.07.005
https://doi.org/10.1109/TPDS.2021.3101153
https://doi.org/10.1109/ICESS.2019.8782524

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 57–72 https://doi.org/10.55056/jec.717

computing, 78(15), pp.17150–17177. Available from: https://doi.org/10.1007/
s11227-022-04556-7.

[25] Safari, M. and Khorsand, R., 2018. Energy-aware scheduling algorithm for time-
constrained workflow tasks in DVFS-enabled cloud environment. Simulation
Modelling Practice and Theory, 87, pp.311–326. Available from: https://doi.org/
10.1016/j.simpat.2018.07.006.

[26] Saha, S. and Purohit, M., 2021. NP-completeness of the Active Time Scheduling
Problem. 2112.03255[cs], Available from: http://arxiv.org/abs/2112.03255.

[27] Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N. and Hackenberg, D.,
2015. Node variability in large-scale power measurements: perspectives from
the Green500, Top500 and EEHPCWG. SC ’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp.1–11. Available from: https://doi.org/10.1145/2807591.2807653.

[28] Senn, L., Senn, E. and Samoyeau, C., 2012. Modelling the Power and Energy
Consumption of NIOS II Softcores on FPGA. 2012 IEEE International Conference
on Cluster Computing Workshops. pp.179–183. Available from: https://doi.org/
10.1109/ClusterW.2012.41.

[29] The Khronos Group, 2013. OpenCL - The Open Standard for Parallel Programming
of Heterogeneous Systems. Available from: https://www.khronos.org/opencl/.

[30] Vipin, K. and Fahmy, S.A., 2018. FPGA Dynamic and Partial Reconfiguration: A
Survey of Architectures, Methods, and Applications. ACM Computing Surveys,
51(4), p.72. Available from: https://doi.org/10.1145/3193827.

[31] Xu, C., Jiang, S., Luo, G., Sun, G., An, N., Huang, G. and Liu, X., 2022. The Case
for FPGA-Based Edge Computing. IEEE Transactions on Mobile Computing, 21(7),
pp.2610–2619. Available from: https://doi.org/10.1109/TMC.2020.3041781.

[32] Young, A.R., Miniskar, N.R., Liu, F., Blokland, W. and Vetter, J.S., 2022.
Adrastea: An Efficient FPGA Design Environment for Heterogeneous Scien-
tific Computing and Machine Learning. In: K. Doug, G. Al, S. Pophale,
H. Liu and S. Parete-Koon, eds. Accelerating Science and Engineering Discov-
eries Through Integrated Research Infrastructure for Experiment, Big Data, Mod-
eling and Simulation. Cham: Springer Nature Switzerland, Communications
in Computer and Information Science, vol. 1690, pp.227–243. Available from:
https://doi.org/10.1007/978-3-031-23606-8_14.

72

https://doi.org/10.55056/jec.717
https://doi.org/10.1007/s11227-022-04556-7
https://doi.org/10.1007/s11227-022-04556-7
https://doi.org/10.1016/j.simpat.2018.07.006
https://doi.org/10.1016/j.simpat.2018.07.006
2112.03255 [cs]
http://arxiv.org/abs/2112.03255
https://doi.org/10.1145/2807591.2807653
https://doi.org/10.1109/ClusterW.2012.41
https://doi.org/10.1109/ClusterW.2012.41
https://www.khronos.org/opencl/
https://doi.org/10.1145/3193827
https://doi.org/10.1109/TMC.2020.3041781
https://doi.org/10.1007/978-3-031-23606-8_14

	1 Introduction
	2 Theoretical background
	2.1 Power management in FPGA-based computing systems
	2.2 Task scheduling in RTOS
	2.3 Problem definition for energy-efficient scheduling

	3 Edge computing system architecture
	3.1 Experimental setup
	3.2 Advantages and disadvantages of the suggested architecture

	4 Results and discussion
	4.1 Limitations
	4.2 Future work

	5 Conclusions

