Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Telemetry to solve dynamic analysis of a distributed
system

Oleh V. Talaver!, Tetiana A. Vakaliuk?%**

! Zhytomyr Polytechnic State University, 103 Chudnivsyka Str., Zhytomyr, 10005, Ukraine

?Institute for Digitalisation of Education of the NAES of Ukraine, 9 M. Berlynskoho Str., Kyiv, 04060, Ukraine
’Kryvyi Rih State Pedagogical University, 54 Universytetskyi Ave., Kryvyi Rih, 50086, Ukraine

*Academy of Cognitive and Natural Sciences, 54 Universytetskyi Ave., Kryvyi Rih, 50086, Ukraine

Abstract. In the modern software development world, implementing distributed solutions has become
quite common due to the flexibility it brings to big companies. The downside is that when developing
such systems, especially in many teams, global design problems may not be obvious and lead to a
slowdown in the development process or even problems with the location of errors or degradation of
overall system performance. In addition, the timely reaction to system degradation is complicated by
the distributed nature of the architecture; while manually configuring rules for reporting problematic
situations can be time-consuming and still incomplete, automatic detection of possible system anomalies
will give engineers (especially Software Reliability Engineers) the focus on problems. For this reason,
applications that can dynamically analyse the system for problems have great potential.

Currently, the topic of using telemetry for system analysis is actively studied and gaining traction, so
further research is valuable. The work aims to theoretically and practically prove the possibility of
using telemetry to analyse a distributed information system and detect harmful architectural practices
and anomalous events. To do this, firstly, a detailed overview of the problems related to the topic
and the feasibility of using telemetry is provided; the next section briefly describes the history of the
development of monitoring systems and the key points of the latest OpenTelemetry standard, reviews
popular application performance monitoring systems, and defines innovative features to be further
researched. The main part includes an explanation of the approach used to collect and process telemetry,
a reasoning behind the usage of Neo4j as a data storage solution, a practical overview of graph theory
algorithms that help in the analysis of the collected data, and a description outlining how the PCA
algorithm is employed to detect unusual situations in the whole system instead of individual metrics. The
results provide an example of using the software presented with Neo4j Bloom to visualise and analyse the
data collected over several hours from the OpenTelemetry Demo test system. The last section contains
additional remarks on the results of the study.’

Keywords: distributed systems, microservices, dynamic analysis, architectural smells, anti-pattern,
visualization, telemetry, anomalies, Open Telemetry, graph theory, statistical analysis

'This article is an extended version of a conference talk presented at the 6th Workshop for Young Scientists in
Computer Science & Software Engineering (CS&SE@SW 2023) [29].
& olegtalaver@gmail.com (O. V. Talaver); tetianavakaliuk@gmail.com (T. A. Vakaliuk)
€} http://acnsci.org/vakaliuk/ (T. A. Vakaliuk)
® 0000-0002-6752-2175 (O. V. Talaver); 0000-0001-6825-4697 (T. A. Vakaliuk)

© Copyright for this paper by its authors, published by Academy of Cognitive and Natural Sciences (ACNS).
® This is an Open Access article distributed under the terms of the Creative Commons License Attribution 4.0
i International (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

87

https://doi.org/10.55056/jec.728
mailto:olegtalaver@gmail.com
mailto:tetianavakaliuk@gmail.com
http://acnsci.org/vakaliuk/
https://orcid.org/0000-0002-6752-2175
https://orcid.org/0000-0001-6825-4697
https://acnsci.org/jec
https://creativecommons.org/licenses/by/4.0
https://acnsci.org

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

1. Introduction

In recent years, distributed architectures such as microservices have received much attention
and popularity due to the opportunities that the architectural pattern opens up in terms of
optimization, technology stack diversification, and more [5]. When built correctly, distributed
systems simplify the development process when many teams are involved, reduce the complexity
of changes or the dependence of teams on each other, and speed up development. Other
commonly mentioned advantages such as the reliability of a whole system when separate
components go down and easiness of understanding (dubious due to the scattered nature of
the use case logic) — are secondary because of the additional complexity that microservices
bring [27] slows down the development of such a system. In contrast, the general advantage
of technological heterogeneity only increases the effort required to maintain the codebase
[3, 28, 32]. On the other hand, while prone to losing the overall application structure and distinct
module separation, monolith architecture is preferable at the start of new project development
when there is much uncertainty involved and frequent global changes are required. Physical
boundaries between services complicate the refactoring process because of the distributed
nature of the application state and dependencies. Therefore, more tools are needed to analyze
the system and respond to problems. The development of distributed information systems
requires more effort, especially when it comes to monitoring the entire system and finding
problematic areas [27], because, unlike a monolith, such a system has many components
developed in parallel, which may have structural flaws [13, 25], also referred to as architectural
smells — design decisions that hinder maintainability and extensibility. For global problems
location, an information system analysis is often conducted to find and quickly address such
shortcomings [21]. A couple of approaches exist, such as static analysis of the codebase of
each system component or analysis of the system logs. Both options are complex because
they require adjustment for each system, technology, and programming language. However,
the static approach, unlike the dynamic one, allows you to analyze the system without the
need to run the whole system, which allows you to correct some local code smells but not the
problems of the system as a whole due to the low accuracy and insufficient information about
the runtime behaviour [4]. At the same time, dynamic analysis is based on the information
gathered in runtime, presenting a more accurate representation of the system utilization. The
most prominent dynamic analysis approach is telemetry, which combines three pillars of system
observability: logs, metrics, and traces. Therefore, the purpose of the work is the theoretical
and practical substantiation of the possibility of using the OpenTelemetry standard to analyze
a distributed information system: detecting and quickly responding to harmful architectural
practices and anomalous events. Next, we outline the tasks:

« research of state-of-art approaches of telemetry analysis;
« modeling extract, transform and load (ETL) and further telemetry analysis process;
« analysis of the received data to identify harmful practices and anomalies.

88

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

2. Theoretical background

The topic of system observability is far from new. In the world of distributed systems, Google
is considered a pioneer in the study of the topic of observability. In 2010, Google engineers
published a paper called “Dapper — a Large-Scale Distributed Systems Tracing Infrastructure”
[24], which prompted the emergence of the first systems for request trace visualization: Jaeger
and Zipkin. However, these applications solved the same problem while being incompatible,
causing vendor lock, so over time, the development of the OpenTracing [30] standard began.
The new standard provides a layer between the application and monitoring systems to track and
collect requests. This standard did not solve the whole problem, so the OpenCensus standard was
later developed to focus on system metrics and logs collection but also included an alternative
implementation of trace collection, which ultimately created more problems, as developers
now had to choose between the two standards. For this reason, in 2019, both standards were
combined into OpenTelemetry [15] to solve the following tasks:

« gathering traces, metrics, and logs in one place;
« finding anomalies through charts;

« finding the location and cause of anomalies through the review of problematic request
traces.

Also, at that time, quite a lot of applications helping in system monitoring had already been
presented on the market; for this reason, one of the tasks was to maintain compatibility with
them, so the latest standard provides a specification that describes approaches for metrics
collection, conventional descriptions of processes such as interaction using the HTTP protocol,
RPC [19] without forcing vendor lock. As a result, OpenTelemetry is currently the most active
project of the Cloud Native Computing Foundation [18].

One of the central notions introduced in the standards is telemetry — a set of metrics, logs
and, most importantly, traces [14], which, in the case of our topic, can be used to build a system
model in the form of a directed graph [4] and later used to analyze and identify bad practices
and problem areas of the system. The OpenTelemetry standard is relatively new, so there is
still active research on the possible use cases, but the central area of use is the visualization of
requests (figure 1) with the ability to search for problematic areas, for example, the cause of
poor service performance or the root cause of an incorrectly working business process [14].

The idea of using telemetry to improve the structure of a system can be traced back to several
research papers released in recent years [6, 7, 20], and has a relatively small list of problems
that can be identified, which opens up opportunities for further study of this topic [21].

To understand the scope of future research, a review of popular telemetry visualization and
application monitoring solutions was conducted. The critical overview is presented below.

Signoz is a relatively new open-source product offering mostly basic monitoring capabilities
but with more details than other open-source solutions. It supports advanced filtering and
customizable dashboards, enables notifications and has simple system graph visualization,
where service dependencies, error and request rates are shown in the figure 2.

ServiceNow Cloud Observability is a closed platform offering comprehensive multi-functional
metrics analysis and charting capabilities. It includes a correlation engine that allows detecting

89

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 1: Request trace visualization.

and analyzing anomalies by comparing a problematic period of time with a base one and finding
differences in attributes among the equivalent trace spans.

Honeycomb (figure 1) focuses on identifying the causes of abnormal situations in the sys-
tem, which helps in finding performance problems much quicker. Otherwise, it has standard
capabilities like system map visualization with some filters, alerting, and notification.

New Relic is an enterprise-level application monitoring system with numerous capabilities,
from monitoring to anomaly analysis. Compared to previous systems, anomaly analysis is
automatic and is included in many places to show differences between groups of services, similar
requests, and degradation of performance and quality. The analysis considers load seasonality
to exclude expected spikes from results.

Based on the review above, the features found were split into two categories: base features,
industry standard for such systems and innovative features — valuable capabilities that make
systems stand out.

A comparison of the applications’ capabilities is shown in table 1.

Base features include:

« list of system services with key metrics shown for each separately (percentage of errors
for some time, percentiles of service request execution speed);

» the possibility of building dashboards with custom queries;

« review of problems and exceptions encountered in system requests. In more advanced
systems, issues management and collaboration capabilities are present;

90

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 2: Signoz system graph (visual reconstruction of the result to improve readability).

Table 1

Application features comparison.
Application Jaeger Signoz Aspecto ServiceNow Honeycomb New Relic
Services, metrics visual- - + - ++ + ++
ization
Exceptions management - + - - - o+
Search and visualization + + ++ ++ ++ ++
of traces
System graph visualiza- - + - + e+ 4+
tion
Alerts management - + - + T+ T+
Automatic anomaly de- - - - - - ++
tection
Third-party systems inte- - - - ++ + 4+
grations
Root cause analysis - - - + + +

« filtering and viewing traces visualization. Such views usually include a couple of represen-
tations like a request graph that shows the path and services involved, various diagrams
to show the time that was spent in a particular service;

« alerts management. Usually, the use case implies calculation of the compliance rate for

91

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 3: Honeycomb bubble up — correlation engine.

SLO measurements, notification;

« system graph visualization may be comprehensive and include multiple layers for visu-
alization of physical relations (part of a particular node, pod...) and logical with call
dependencies.

Innovative features include:

« comparison of groups of request traces to find factors contributing to changes in perfor-
mance. The example may be that very slow queries are seen for some small portion of
users that use additional parameters;

« automatic detection of problems in the system (anomalies detection). More advanced
implementations may include the ability to adapt to expected changes, for example, day
and night load difference, increased usage during some period of a day;

« root cause analysis — automatic determination of the causes of problems in the system
pointing to a problematic service, endpoint, or release;

« integration with the infrastructure - to display more information about the location of
service instances more server related metrics;

« integration with external systems such as GitHub, Continuous Integration (CI), and
Continuous Delivery (CD) platforms to be able to quickly jump from one system to
a contextually related place of another (e.g. file source), collect deployment events,
track service versions, display additional metadata related to the services that are stored
centrally in the repository.

92

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

After analyzing the above functionality, two areas of improvement were found:

« identification of bad architectural practices that cause a big problem in distributed systems
development because when individual teams work on separate parts of the application, it
may be tough to track dependencies and see the bigger picture, which leads to degradation
of performance and maintainability. The architectural smells that will be visualized are
the following:

- bottleneck - a component on which many other components depend using syn-
chronous requests. This may lead to system fragility when this component is
unavailable;

— cyclic dependency - a cluster of components highly dependent on each other, causing
high coupling. This practice indicates incorrectly separated responsibilities of the
components;

— nano-service — a service that depends on many others through synchronous requests.
Often, this means the service is too small but still requires efforts to support, not to
mention the overhead the synchronous requests add due to slower network speed
compared to in-process invocation;

« anomalies detection in the whole system — analysis of key metrics of system components to
find problematic areas. Compared to other available solutions, the current implementation
will consider the whole system instead of separate requests and use cases.

3. Methods

3.1. Defining data and storage for architectural smells detection

The proposed analytical system receives a constant stream of telemetry data and aggregates
it by updating the system model in the form of a directed graph stored in a graph database
management system (DBMS). Then, the model can be used for analysis, searching for structural
anti-patterns.

Constructing the system’s graph model involves processing traces of requests (figure 4). Once
they are received, the process creates or updates information about available resources (services,
storages, proxies) and stores information about changes in the storage. Operations available in
the service (operation) and individual sub-requests (hop).

To build a system graph for further analysis, the data storage must have the following
information:

« resources are interacting components of the system. A resource must have a name, type
(service, storage), date of creation and last use;

« operations are defined by one resource and called by other ones; have statistics on the
number of calls, errors, the last date of creation, and use;

« calls — connections between a resource and an operation. They have the creation date,
last use, type (synchronous, asynchronous), and number of errors.

93

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 4: Example of a request tree.

Neo4j was chosen as the storage of the system model since it physically stores data as a graph,
which makes it possible to use graph traversal algorithms to find bad practices in the system,
namely:

« clustering coefficient — measures the degree of vertex connectivity; will help show service
groups in the system [11];

« degree centrality — measure the number of connections between vertices; makes it possible
to calculate the affinity (coupling) metrics of components in the system [10];

« strongly connected components - finds groups where each vertex is accessible from any
other; helps to identify cyclic dependencies in the system [12].

The graph DBMS structure is presented in figure 5.

Data storage has two types of nodes: resources and operations. Resources are related to the
operations with the “Provides” relation. To show calls, the “Calls” relationship is used, which
aggregates statistics for all identical calls from one resource to an operation of another resource

(figure 6).

94

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 5: Simplified diagram of the structure of a graph DBMS.

Figure 6: Complete graph DBMS structure diagram.

The ETL process begins with the system’s instrumentation — the installation of modules
for popular libraries that will collect the telemetry and manual changes in service code to
provide more details of a particular process in the system. Later, the telemetry is sent to the
OpenTelemetry Collector [16] — a separate modular application developed by the authors of
the standard, which allows you to unify the process of collecting, transforming, and exporting
telemetry into various popular monitoring systems. In figure 7, we can see how metrics (blue)
and traces (red) are emitted and occasionally sent by every service in the open telemetry demo
project to the collector. Telemetry is received by modules called “receivers”, which can receive
or extract data from various systems, like Jaeger and Prometheus. However, the OTLP protocol
is developed explicitly for telemetry transportation in this case. In the collector, there are two
other modules: processors, which help to transform and filter telemetry and exporters, which
send the telemetry to external systems. There are numerous available modules, but our task is

95

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

to create a custom exporter that takes batches of traces, extracts necessary data, and unloads it
into neo4;j.

Figure 7: Telemetry flow diagram.

The developed module takes a group of trace objects as input (the detailed structure of a
trace with an explanation can be found in the standard source code [31]) and loops through
each span. A span defines some operation in the system (see figure 4); it can be the start of the
service operation (“server” span for direct request, “consumer” for async events handling), call
another server operation (“client” span for a request, “producer” for async event) or in process
operation (internal span). Since the trace is a chain of consecutive spans, all but the first root
spans have a parent. Following the chain, we can distinguish individual operations, resources,
and calls. All this data is inserted into the database as follows (snippet of a Cypher request for
upserting a resource in the system):

OPTIONAL MATCH (r:Resource)
WHERE $toResourceName =~ "(?1i).*" + r.name + ".*x"
OR r.name =~ "(?i).*" + $toResourceName + ".*"
WITH CASE r IS NULL
WHEN true THEN $toResourceName
ELSE r.name
END as resourceName, operation
MERGE (toResource:Resource {name: resourceName})
ON CREATE
SET
toResource.createdAt = timestamp(),

96

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

toResource.lastUsedAt = timestamp(),
toResource.type = $toResourceType

ON MATCH

SET toResource.lastUsedAt = timestamp()

WITH operation, toResource

3.2. Methods of anomalies detection

The problem of finding and analyzing anomalies is quite common in computer science and
often varies depending on the domain in which the analysis takes place. For example, when
reading data from sensors for further analysis, it is essential to find and correct outliers. When
analyzing a business process, it is sometimes necessary to find unusual events to analyze what
led to them. In software reliability engineering, the topic of mean time to detect is one of the
most critical indicators because if the problem is found earlier, it is fixed earlier.

Analysis of anomalous changes is already present, at least in New Relic. However, it is present
at the level of individual services, not the entire system. Although there is not enough data
to confirm this, the platform analyzes metrics, including key metrics, using the Exponential
Smoothing [1], which is a method of predicting a single variable and, depending on the type,
can take into account seasonality [2]. However, it is also possible to find anomalies opposite -
from a larger scale, using multivariate algorithms, which will be used in this work.

An anomaly is an abnormal situation defined as a substantial difference between expected
and actual measurements. Therefore, the process of finding an anomaly includes the process of
predicting the value of a particular measurement based on historical data [8].

The problem of finding anomalies in multivariate datasets is quite popular and critical because
little to no measurements are univariate [26].

Algorithms are divided into the following training approaches:

« unsupervised - the dataset used for model training does not include labels indicating
anomalous situations;

« semi-supervised - the dataset has anomalous situations labelled;

« supervised — the whole dataset is labelled, the least commonly used type of algorithm, as
it is difficult to get fully labelled data.

Due to the difficulty of obtaining labelled data, unsupervised models are the most popular.
At the same time, it is also possible to add the possibility of providing feedback and a correction
loop when using models for semi-labelled datasets. As part of this work, the unsupervised model
is reviewed. While “None of the unsupervised methods is statistically better than the others”
(8], which is due to the complexity of training on unlabeled data in which extra parameters only
interfere, it was decided to choose Principal Component Analysis (PCA) - a statistical method
of multivariate analysis used to identify the main structural components in a dataset. The main
goal of PCA is to reduce the dimensionality of data while explaining the dataset in as much
detail as possible, which, due to the simplicity of the approach, is well-suited for multivariate
datasets and makes it the most common algorithm.

97

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Essentially, PCA converts the initial correlated variables into new linear combinations called
principal components. The first principal component is defined in such a way that it explains
the most significant part of the data variance. Each successive principal component is chosen to
be orthogonal to the previous ones and explain the residual variance as much as possible.

In the case of identifying anomalies in the system, we are interested in the following infor-
mation:

+ calls — number of incoming, outgoing, and internal calls (synchronous and asynchronous
when using a queue or other message brokers) with and without errors;
« duration - time spent processing requests.

To obtain the necessary data in metrics and group collected data, you need to use a unique
connector component that transforms traces into call and duration metrics. Thus, the collector
receives information about the request via the Open Telemetry Protocol (OTLP) and then groups
and extracts the necessary metrics to export later.

Each of the system’s components (resources) collects metrics for a certain period. Metrics
have different types of values. For example, the number of calls has the sum type, which is a
counter of certain events for a period and, in this case, is a monotonous sequence because the
number of calls never decreases.

It is also important to note that the metrics are returned as a delta (the value of aggregation-
Temporality is 1) and not a cumulative value because we are interested in the number of calls in
a certain period, not the absolute value. Each metric can have multiple points that represent
different attribute-defined dimensions (dimensions are customizable), so separate counters have
been set up for different request types (span.kind) and statuses (status.code).

Calls duration metric snippet:

{

"name": "duration",

"unit": "ms",

"histogram": {

"dataPoints": [

{

"attributes": [

{

"key": "service.name",

"value": {

"stringValue": "quoteservice"

}

3

1,

"startTimeUnixNano": "1685509043760171242",
"timeUnixNano": "1685509058790174364",
"count": "1",

98

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

"sum": 0.006665,
"bucketCounts": [

IIll',

"Ol',

1,

"explicitBounds": [

0.1,

1,

1,

"exemplars": [

{

"timeUnixNano": "1685509058790174364",

"asDouble": 0.006665,

"spanId": "ade03fcb73f18048",

"traceId": "7f6cf387237813d1£3891b5f21b09be2"
}

]

3

1,

"aggregationTemporality": 1

}

}

If we take the call duration metric, then in this case we have a histogram, which is a certain
aggregation of values and their distribution over intervals used for easier visualization.

But in this form, we will not be able to use this data. Firstly, all the metrics for individual
services are separated (figure 8) and converted to time series (figure 9) to later be combined
based on timestamp (figure 10).

v [Oresults

accountingservice_incomingAsync_request_duration.csv

accountingservice_incomingAsync_requests_without_errors.csv
adservice_internal_request_duration.csv

adservice_internal_requests_without_errors.csv
adservice_outgoing_request_duration.csv

adservice_outgoing_requests_without_errors.csv
checkoutservice_incoming_reqguest_duration.csv

checkoutservice_incoming_requests_without_errors.csv

checkoutservice_internal_request_duration.csv

Figure 8: Results of a metric timeseries per service extraction .

99

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

time,value
1685509058790506925,3.201241
1685509073760723132,86.654854
1685509088760464981,4.221619
1685509103760203727,4.63424825
1685509118760201716,4.838916
1685509133766908850,45,745556
1685509163765380527,3.4242303333333335
1685509178765006382,4.1387815
1685509193764866922,10.35692
1685509208765251617,2.4504515
1685509223764207083,3.4219543333333333
1685509238764558486,15.992556
1685509253763748445,3.518201
1685509268764675932,6.9955475
1685509283764021324,3.0531842499999997
1685509298763192098,2.2964245
1685509313763421062,3.841479666666667

Figure 9: Metric timeseries file example.

Figure 10: Combined metrics.

From the intermediate results, you can clearly see the correlation between the different metrics
of the system components (figure 11), which is confirmed by a correlation map (figure 12).

The process of identifying anomalies occurs by splitting the data sample into two periods, the
first is used to train the PCA statistical model, the second is used to compare with the predicted
values obtained from the model and, estimate the error for all and specific metrics.

Snippet of model training:

from sklearn.model_selection import TimeSeriesSplit
from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import numpy as np

rec_errors_samples = {}
rec_errors_features = {}

100

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 11: Chart of metric values over time.

for i, (past_id,future_id) in enumerate(
TimeSeriesSplit(10).split(df)

scaler = StandardScaler()
pca = PCA(0.7, random_state=33)
pca.fit(scaler.fit_transform(df.iloc[past_id]))

df_inverse = pca.inverse_transform(
pca.transform(
scaler.transform(df.iloc[future_id])

)
)
time = df.iloc[past_id[-1]].name
diff = scaler.transform(df.iloc[future_id]) - df_inverse
rec_errors_samples[time] = np.linalg.norm(diff, axis=1)
rec_errors_features[time] = np.linalg.norm(diff, axis=0)

101

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 12: Metrics correlation map.

4. Results

The OpenTelemetry Demo project was used as a test system [17], specially designed for testing
applications working with telemetry. This distributed system has components built with
different technologies and is automatically loaded using a load generator service.

4.1. Visualization of the service graph using Neo4j tools

After running the whole system, the graph database has the following data (figure 13). You
can see that the graph has many nodes with the type of operation (orange circles) and slightly
fewer services (purple circles). You can see the “calls” and “provides” relationships depicted as
arrows between them.

102

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 13: Visualization of the full graph of services, operations and connections between them using
Neo4j Browser (visual reconstruction of the result to improve readability).

To simplify the graph, a function from the APOC library is used [9] for Neo4j in order to
visualize the graph projection and show service dependencies (figure 14).
A snippet of a virtual relationship visualization query:

MATCH (rl:Resource)-[:Calls]->(:0Operation)<-[:Provides]-(r2:Resource)
RETURN rl1, r2, apoc.create.vRelationship(rl, ’DependsOn’,{}, r2) as rel

In figure 14, you can see the dependence of the checkout service on many others. To confirm
this, let us use Neo4j Bloom to visualize Local Clustering Coefficient [11] and Degree Centrality
[10] algorithms.

In the resulting diagram (figure 15), clusters are marked with distinct colours, and their
size indicates the dependence of services on peers. From the diagram, it is also clear that the
checkout service has many dependencies. This way, you can quickly analyze the application’s
architecture and see parts that must be refactored to prevent the whole application halts due to
a single bottleneck component.

103

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 14: Visualization of the dependency graph in Neo4j Browser (visual reconstruction of the result
to improve readability).

4.2. Time interval anomalies analysis

A few hours-long time interval was chosen to detect anomalies. It has been processed using
the PCA algorithm, and after receiving errors for each time point, a visual analysis can be
performed for the presence of spikes in the error values (figure 16).

As you can see in the plot, between 6:50 a.m. and 7 a.m., there were some changes that led to
a relatively big error. From the error graph for each of the features, it can be seen that feature 44
is involved in this error, so by conducting a more detailed analysis of the values of this metric,
we can see that all values are kept near 0, while there is an outlier with a value of about 12.

5. Discussion

Compared to static analysis approaches, dynamic analysis allows you to see the accurate
picture of the entire system, all possible query paths that are used, and accurately indicate the

104

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 15: Visualization of the dependency graph of services considering clustering and centrality
algorithms in Neo4j Bloom (visual reconstruction of the result to improve readability).

components that cause a problem in the performance of the system at a particular moment,
in contrast to static analysis of individual modules, which is better suited for the tasks of
identifying code smells. Telemetry, in turn, allows you to combine all key indicators and add
the additional context that allows you to get more information for analysis.

The practical use of a simple statistical unsupervised PCA algorithm has demonstrated the
possibility of using such a model to identify anomalies, which can significantly simplify the work
of engineers because instead of looking at dozens of charts and responding to user messages in
support, this statistical analysis suggests the occurrence of anomalous situations in the system
automatically. When compared with the approaches of analyzing each metric of the system
separately (using appropriate statistical methods, for example, those used in NewRelic [1]), this
method gives the general picture, allowing you to understand the situation in the entire system,
but also provides the cause of the problem. Compared to supervised algorithms, especially

105

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Figure 16: The result of displaying the data reconstruction error for all and individual metrics.

neural networks [22, 23], using the proposed method removes the need to retrain the model to
adapt to regular changes (e.g., a natural increase in the number of users of the system), because
the analysis takes place in a specific window, although undoubtedly this window should be of a
particular size to cover a sufficient amount of data for training and analysis and at the same
time not be too sensitive to seasonal changes (for example, activity during the day vs. activity
at night), which needs to be tested and determined on a natural system.

6. Conclusions

The paper discusses the use of telemetry for dynamic analysis of the system for anomalous
events and architectural smell detection.

An analysis of the problems related to distributed systems development with a detailed
summary of the comparison of the monolithic and distributed architectures was carried out,
which made it possible to determine the need for applications for monitoring and rapid response
to problems in an extensive system. Studies on the use of telemetry for dynamic system
analysis, which have been published in recent years, have shown the potential of this approach.
The history of the system monitoring topic development and the main aspects of the latest
OpenTelemetry standard were reviewed as well as popular applications performance monitoring
solutions were compared to later list the features presented in the systems, divide them into
groups of essential and innovative, and define the tasks for the study.

Later, the primary data flows required for analysis were identified, and a model of a graph
DBMS was built. The model includes the following entities: operations, resources, and relation-
ships, which determine the direction of resource dependence and ownership of operations. After
that, telemetry extraction, processing and unloading using the OpenTelemetry Collector was
reviewed. The main types of anomaly detection algorithms were studied, and the multivariate
PCA statistical method was chosen to analyse unlabeled telemetry data. A custom component
of the collector application was developed to transform and insert information into the Neo4;j
datastore. The necessary features to be used are the process of collecting appropriate numbers
and the duration of calls within the system to find anomalies. An algorithm for collecting

106

https://doi.org/10.55056/jec.728

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

metrics was described. The next part overviewed the method of using a statistical model of
PCA to identify anomalies.

The next part used an aggregated graph model to analyze architectural smells. Several
possible visualizations of the dependency graph using Neo4j and Neo4j Bloom were provided,
and clustering and centrality algorithms were used to identify problem areas in the system
architecture visually. The statistical model results based on the Principal Component Analysis
algorithm were also analyzed. The accuracy of this model is sufficient to determine anomalous
events.

The topic of telemetry usage to find bad architectural practices has the potential for further
development [7]. After all, the collected data is enough to determine more complex patterns: too
long synchronous and asynchronous requests, long chains of synchronous requests, too many
different technologies in a small system, and a significant time difference between when an
event is published and processed. To provide even more opportunities for analysis, it is possible
to enrich system resources with additional metadata indicating belonging to a specific bounded
context (to compare de jure and de facto clusters of contexts, to identify situations of using the
same database in different parts of the application) [5], dates of any changes or releases. Also,
this data should be displayed on the main map of the system components. Further development
of anomaly analysis includes integration with an application performance monitoring (APM)
system, the ability to configure threshold values for reconstruction error, adding custom metric
streams for analysis, and testing on a natural system by comparing it with existing approaches.

Suppose we consider other topics of telemetry usage. In that case, we cannot omit the topic
of analyzing individual use cases in the application, which are sets of requests that go through
a bunch of services and have variations depending on some stored state of the application; the
analysis includes both the ability to evaluate performance, the number of errors of a particular
use case, the ability to subscribe a specific development team to updates for a quick response
in case of anomalous situations, and ability to view changes, including performance, between
different releases.

References

[1] Boone, N.D., 2017. Dynamic Baseline Alerts Now Automatically Find the Best Algorithm
for You. Available from: https://newrelic.com/blog/how-to-relic/baseline-alerts-algorithm.

[2] Brownlee, J., 2020. A Gentle Introduction to Exponential Smoothing for Time Se-
ries Forecasting in Python. Available from: https://machinelearningmastery.com/
exponential-smoothing-for-time-series-forecasting-in-python/.

[3] Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T. and Mazzara, M., 2018. From
Monolithic to Microservices: An Experience Report from the Banking Domain. IEEE
Software, 35(3), pp.50-55. Available from: https://doi.org/10.1109/MS.2018.2141026.

[4] Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A. and Taibi, D., 2022. Microservice
Architecture Reconstruction and Visualization Techniques: A Review. 2022 IEEE Interna-
tional Conference on Service-Oriented System Engineering (SOSE). pp.39-48. Available from:
https://doi.org/10.1109/SOSE55356.2022.00011.

[5] Francesco, P.D., Malavolta, I. and Lago, P., 2017. Research on Architecting Microservices:

107

https://doi.org/10.55056/jec.728
https://newrelic.com/blog/how-to-relic/baseline-alerts-algorithm
https://machinelearningmastery.com/exponential-smoothing-for-time-series-forecasting-in-python/.
https://machinelearningmastery.com/exponential-smoothing-for-time-series-forecasting-in-python/.
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/SOSE55356.2022.00011

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

(7]

(9]
[10]

(18]
[19]

[20]

[21]

Trends, Focus, and Potential for Industrial Adoption. 2017 IEEE International Conference
on Software Architecture (ICSA). pp.21-30. Available from: https://doi.org/10.1109/ICSA.
2017.24.

Gamage, I.U.P. and Perera, I, 2021. Using dependency graph and graph theory concepts to
identify anti-patterns in a microservices system: A tool-based approach. 2021 Moratuwa
Engineering Research Conference (MERCon). pp.699-704. Available from: https://doi.org/10.
1109/MERCon52712.2021.9525743.

Guo, X., Peng, X., Wang, H., Li, W,, Jiang, H., Ding, D., Xie, T. and Su, L., 2020. Graph-
Based Trace Analysis for Microservice Architecture Understanding and Problem Diagnosis.
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. New York, NY, USA: Association
for Computing Machinery, ESEC/FSE 2020, p.1387-1397. Available from: https://doi.org/
10.1145/3368089.3417066.

Han, S., Hu, X., Huang, H., Jiang, M. and Zhao, Y., 2022. ADBench: Anomaly Detection
Benchmark. In: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh,
eds. Advances in Neural Information Processing Systems. Curran Associates, Inc., vol. 35,
pp-32142-32159. Available from: https://proceedings.neurips.cc/paper_files/paper/2022/
file/cf93972b116ca5268827d575f2cc226b-Paper-Datasets_and_Benchmarks.pdf.

Neo4j APOC Library, 2023. Available from: https://neo4j.com/developer/neo4j-apoc/.
Neo4j Degree Centrality, 2023. Available from: https://neo4j.com/docs/graph-data-science/
current/algorithms/degree-centrality/.

Neo4j Local Clustering Coefficient, 2023. Available from: https://neo4j.com/docs/
graph-data-science/current/algorithms/local-clustering-coefficient/.

Neo4j Strongly Connected Components, 2023. Available from: https://neo4j.com/docs/
graph-data-science/current/algorithms/strongly-connected-components/.

Niedermaier, S., Koetter, F., Freymann, A. and Wagner, S., 2019. On Observability and Moni-
toring of Distributed Systems — An Industry Interview Study. In: S. Yangui, I. Bouassida Ro-
driguez, K. Drira and Z. Tari, eds. Service-Oriented Computing. Cham: Springer International
Publishing, pp.36-52. Available from: https://doi.org/10.1007/978-3-030-33702-5_3.
Observability Primer, 2023. Available from: https://opentelemetry.io/docs/concepts/
observability-primer/.

OpenTelemetry, 2024. Available from: https://opentelemetry.io/docs/
what-is-opentelemetry/.

OpenTelemetry Collector, 2023. Available from: https://opentelemetry.io/docs/collector/.
OpenTelemetry Demo, 2023. Available from: https://github.com/open-telemetry/
opentelemetry-demo.

OpenTelemetry Project Journey Report — 2023, 2023. Available from: https://www.cncf.io/
reports/opentelemetry-project-journey-report/.

OpenTelemetry Semantic Conventions, 2024. Available from: https://opentelemetry.io/
docs/specs/semconv/.

Parker, G., Kim, S., Maruf, A.A,, Cerny, T,, Frajtak, K., Tisnovsky, P. and Taibi, D., 2023.
Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study. IEEE
Access, 11, pp.4434—-4442. Available from: https://doi.org/10.1109/ACCESS.2023.3236165.
Pigazzini, I, Fontana, F.A., Lenarduzzi, V. and Taibi, D., 2020. Towards Microservice Smells

108

https://doi.org/10.55056/jec.728
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/MERCon52712.2021.9525743
https://doi.org/10.1109/MERCon52712.2021.9525743
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1145/3368089.3417066
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf93972b116ca5268827d575f2cc226b-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf93972b116ca5268827d575f2cc226b-Paper-Datasets_and_Benchmarks.pdf
https://neo4j.com/developer/neo4j-apoc/
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/
https://neo4j.com/docs/graph-data-science/current/algorithms/strongly-connected-components/
https://neo4j.com/docs/graph-data-science/current/algorithms/strongly-connected-components/
https://doi.org/10.1007/978-3-030-33702-5_3
https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/collector/
https://github.com/open-telemetry/opentelemetry-demo
https://github.com/open-telemetry/opentelemetry-demo
https://www.cncf.io/reports/opentelemetry-project-journey-report/
https://www.cncf.io/reports/opentelemetry-project-journey-report/
https://opentelemetry.io/docs/specs/semconv/
https://opentelemetry.io/docs/specs/semconv/
https://doi.org/10.1109/ACCESS.2023.3236165

Journal of Edge Computing, 2024, 3(1), pp.87-109 https://doi.org/10.55056/jec.728

Detection. Proceedings of the 3rd International Conference on Technical Debt. New York,
NY, USA: Association for Computing Machinery, TechDebt ’20, p.92-97. Available from:
https://doi.org/10.1145/3387906.3388625.

[22] Pilkevych, LA, Fedorchuk, D.L., Romanchuk, M.P. and Naumchak, O.M., 2023. Approach
to the fake news detection using the graph neural networks. Journal of Edge Computing,
2(1), p.24-36. Available from: https://doi.org/10.55056/jec.592.

[23] Semerikov, S.0., Vakaliuk, T.A., Mintii, LS., Hamaniuk, V.A., Soloviev, V.N., Bondarenko,
OV., Nechypurenko, P.P., Shokaliuk, S.V., Moiseienko, N.V. and Ruban, V.R,, 2021. Develop-
ment of the computer vision system based on machine learning for educational purposes.
Educational Dimension, 5, p.8—60. Available from: https://doi.org/10.31812/educdim.4717.

[24] Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., Jaspan, S.
and Shanbhag, C.K., 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Available from: https://api.semanticscholar.org/CorpusID:14271421.

[25] Soldani, J., Tamburri, D.A. and Van Den Heuvel, WJ., 2018. The pains and gains of
microservices: A Systematic grey literature review. Journal of Systems and Software, 146,
pp.215-232. Available from: https://doi.org/10.1016/j.js5.2018.09.082.

[26] Suboh, S., Aziz, I, Shaharudin, S., Ismail, S. and Mahdin, H., 2023. A Systematic Review of
Anomaly Detection within High Dimensional and Multivariate Data. JOIV : International
Journal on Informatics Visualization, 7, p.122. Available from: https://doi.org/10.30630/joiv.
7.1.1297.

[27] Soylemez, M., Tekinerdogan, B. and Kolukisa Tarhan, A., 2022. Challenges and Solution
Directions of Microservice Architectures: A Systematic Literature Review. Applied sciences,
12(11), p.5507. Available from: https://doi.org/10.3390/app12115507.

[28] Talaver, O.V. and Vakaliuk, T.A., 2023. Reliable distributed systems: review of modern
approaches. Journal of edge computing, 2(1), p.84-101. Available from: https://doi.org/10.
55056/jec.586.

[29] Talaver, O.V. and Vakaliuk, T.A., 2024. Dynamic system analysis using telemetry. In: S.O.
Semerikov and A.M. Striuk, eds. Proceedings of the 6th Workshop for Young Scientists in
Computer Science& Software Engineering (CS&SE@SW 2023), Virtual Event, Kryvyi Rih,
Ukraine, February 2, 2024. CEUR-WS.org, CEUR Workshop Proceedings, vol. 3662, pp.193-209.
Available from: https://ceur-ws.org/Vol-3662/paper01.pdf.

[30] The OpenTracing Semantic Specification, 2023. Available from: https://opentracing.io/
specification/.

[31] Trace source code, 2023. Available from: https://github.com/open-telemetry/
opentelemetry-proto/blob/0a743e76ddbb34d7d46a4c3ca8f9d7bdbb81e389/
opentelemetry/proto/trace/v1/trace.proto.

[32] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R. and Gil, S.,
2015. Evaluating the monolithic and the microservice architecture pattern to deploy web
applications in the cloud. 2015 10th Computing Colombian Conference (10CCC). pp.583-590.
Available from: https://doi.org/10.1109/ColumbianCC.2015.7333476.

109

https://doi.org/10.55056/jec.728
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.55056/jec.592
https://doi.org/10.31812/educdim.4717
https://api.semanticscholar.org/CorpusID:14271421
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.30630/joiv.7.1.1297
https://doi.org/10.30630/joiv.7.1.1297
https://doi.org/10.3390/app12115507
https://doi.org/10.55056/jec.586
https://doi.org/10.55056/jec.586
https://ceur-ws.org/Vol-3662/paper01.pdf
https://opentracing.io/specification/
https://opentracing.io/specification/
https://github.com/open-telemetry/opentelemetry-proto/blob/0a743e76ddbb34d7d46a4c3ca8f9d7bdbb81e389/opentelemetry/proto/trace/v1/trace.proto
https://github.com/open-telemetry/opentelemetry-proto/blob/0a743e76ddbb34d7d46a4c3ca8f9d7bdbb81e389/opentelemetry/proto/trace/v1/trace.proto
https://github.com/open-telemetry/opentelemetry-proto/blob/0a743e76ddbb34d7d46a4c3ca8f9d7bdbb81e389/opentelemetry/proto/trace/v1/trace.proto
https://doi.org/10.1109/ColumbianCC.2015.7333476

	1 Introduction
	2 Theoretical background
	3 Methods
	3.1 Defining data and storage for architectural smells detection
	3.2 Methods of anomalies detection

	4 Results
	4.1 Visualization of the service graph using Neo4j tools
	4.2 Time interval anomalies analysis

	5 Discussion
	6 Conclusions

