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Abstract. The role of Intrusion Detection Systems (IDS) in the protection against
the increasing variety of cybersecurity threats in complex environments, including
the Internet of Things (IoT), cloud computing, and industrial networks. This study
evaluates the existing state-of-the-art IDS methodologies using Deep Learning (DL)
approaches, and advanced feature engineering techniques. This research also
highlights the success of models such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Explainable Al (XAI) in improving detection accuracy as
well as computational efficiency and interoperability. Blockchain and quantum
computing technologies are explored to improve data privacy, resilience, and scala-
bility in decentralized and resource-constrained environments. This work primarily
identifies key challenges, including real-time anomaly detection, adversarial robust-
ness, and imbalance datasets, to assist researchers in investigating further research
opportunities. Focusing on future research in filling these gaps, proceeds toward
developing lightweight, adaptive, and ethical IDS frameworks that can operate in
real-time across dynamic and heterogeneous environments. In this paper, existing
IDS approaches, research opportunities, and advanced cybersecurity strategies are
critically synthesized to create a useful resource for academics, researchers, and
industry practitioners.

Keywords: Intrusion Detection Systems (IDS), Machine Learning (ML), Deep Learn-
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1. Introduction

A cyber attack is a deliberate attempt to breach or impair computer systems,
networks, or devices. A cyber attack may involve actions like hacking, malware
propagation, or phishing to steal information, disrupt service, or inflict financial loss
[30, 59]. The current state of cyberattacks reflects a serious and growing threat
in different domains, including healthcare [104], institutions [84], and industrial
networks [102] cyberattacks have increased tremendously during the COVID-19
pandemic and health systems are increasingly under attack; this justifies the need for
better cybersecurity training among staff to reduce risks. The institution of research
is also being rendered a perfect place for states of paralyzing because of ransomware
attacks, which reduce the operational level of the institution by both staff and students
[53]. Network technologies have advanced at an incredible pace and enhanced the
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sophistication of these cyberattacks, making detecting and identifying anomalies
challenging for cybersecurity experts. While it has taken hold in industrial contexts,
Internet of Things (IoT) technologies are making critical control systems vulnerable;
therefore, there should be appropriate strategies to ensure cyber resilience [11]. To
that effect, Deep Learning (DL) and frameworks using Continuous Temporal Graphs
(CTQG) are developing to yield better anomaly detection and adaptation for the dynamic
nature of network interactions [29]. Cyber threats have taken very complex dimensions
that need wide approaches in detection and response.

The most influential factors for performance improvement in Machine Learning (ML)
and DL encompass data handling, model architecture, and adaptability. Federated
learning in intrusion detection will promote model performance with data privacy,
whereby multiple devices will jointly train a model without necessarily exposing
sensitive information. Besides, multistage deep neural networks combined with
transfer learning techniques offer much more resistance to unknown attacks by
providing high detection accuracy even against variations that have never been seen
before [43]. Transfer learning is an ML approach in which a pre-trained model is
transferred to another related task for enhanced performance and decreased training
time [44]. Being enhanced by various algorithms such as feature-weighted attention
and hybrid ones, class imbalance problems provide higher sensitivity of intrusions
along with minimizing false positives [40]. The capabilities for detection can be
considerably improved in the complex network environment by optimization in feature
selection and big data analytics, thus making Intrusion Detection Systems (IDS)
effective against diversified and continuously evolving threats [103]. These strategies
contribute to modern intrusion detection systems’ overall resilience and accuracy.

Figure 1 depicts general IDS architecture and the primary components and pro-
cesses. It starts with network monitoring and host monitoring, which gather traffic

Figure 1: An abstract design of an IDS architecture.
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information and system logs, respectively. The network monitoring process sniffs the
network traffic and checks packets for indications of attacks, and the host monitor-
ing process checks system processes and reviews logs for indications of malicious
behavior [68]. The collected data is then analyzed by two detection mechanisms:
Signature-Based Detection, which matches known attack signatures, and Anomaly-
Based Detection, which identifies abnormality from normal behavior using Anomaly
Detection Processes like anomaly detection and behavior learning [54]. After an intru-
sion is identified, the Alert System generates alerts and logs the incidents for analysis
and response. The step-by-step process enables the system to detect and combat
cyber-attacks effectively [72, 116].

The fast evolution of cyber threats forces developers to enhance the IDS with
increased strength and flexibility for protecting modern networks, especially within
complex dynamic environments such as cloud computing and the IoT. This has been
witnessed to be effective by several methods, including machine learning and deep
learning techniques, although class imbalance, real-time detection challenges, and
resilience of IDS models to adversarial attacks remain open issues in this area [26].
With this, the demand for models that can integrate various approaches, hybrid
models, and advanced techniques concerning feature selection is on the increase [16].
The exploration of this area is very important, considering the broad utilization of
intrusion detection systems in very critical sectors that relate to health, industry-
related networks, and research institutions. The research question guiding this study
is:

How can emerging techniques and optimization strategies improve IDS performance,
adaptability, and resilience in dynamic networks?

This research aims to provide a deep understanding of the state of the art in IDS
through a systematic literature review (SLR). This review aims to integrate the existing
modern methodologies, assess their effectiveness, and pinpoint critical gaps in the
current body of research. The specific aims of the current study are to:

¢ Discuss the new technologies, to enhance the deep learning, hybrid models, and
optimization algorithms that have impacted IDS performance.

* Discuss the challenges of real-time detection and class imbalance handling in
IDS.

* Investigate the efficacy of advanced feature selection and big data analytics in
detection accuracy enhancement.

¢ Identifying key research gaps and future research directions.

Achieving these objectives, this study contributes to enhancing significant insights
in both academic and practical fields, consequently enhancing resilience and efficiency
in modern network environments.

2. Review process

In this research, a SLR process has been conducted, as depicted in figure 2, it is a
strict framework intended for the identification, evaluation, and synthesis of existing
research to answer specific questions or to explore particular subjects extensively.
It is a pre-planned protocol that allows for transparency and reproducibility; the
steps typically include defining the research objectives, creating criteria for inclusion
and exclusion, searching relevant databases, selecting appropriate studies, assessing
the quality of those studies, and synthesizing the results [55]. SRLs are applied
in healthcare, software engineering, and social sciences, among others, to provide
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evidence-based insights, identify research gaps, and set a base for further investi-
gations. Due to systematic approaches, SLRs significantly reduce biases, thereby
increasing the reliability of results, adding to the rigor of the scholarly work, and
providing more confidence to stakeholders [92].

Figure 2: Systematic literature review process.

Figure 3: PRISMA flow diagram of the systematic literature review process.

This paper employs a stringent SLR procedure, following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) for readability and repro-
ducibility, as presented in figure 3, which depicts the PRISMA flow diagram. The SLR
procedure shortlisted papers based on predefined criteria for quality and relevance.
Research carried out with the latest techniques like DL, optimization techniques, and
blockchain technologies were prioritized. Articles that were non-English, duplicate,
and research with no empirical result or peer-reviewed publication were excluded.
Extensive searches were made with different scholarly databases like the Institute of
Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing Machin-
ery (ACM) Digital Library, SpringerLink, and Scopus. A general keyword strategy was
employed, picking words from different IDS-related areas. All the keywords employed
in the search are shown in categorized manner in table 1. The search period covered
papers from 2015 to 2024. The initial result set comprised 131 papers; upon removal
of duplicates, 102 papers were left. Title and abstract screening reduced this to 68,
and full-text review yielded 52 studies for qualitative synthesis. All selected papers
were assessed using a binary scoring rubric based on four criteria: (i) empirical valida-
tion (e.g., experimentation on benchmark datasets), (ii) publication in peer-reviewed
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venues, (iii) relevance to IDS innovation, and (iv) clarity and completeness of method-
ological reporting. A score of 1 (meets criterion) or O (does not meet criterion) was
allocated to each criterion, and studies with a total score of 3 or more were included in
the final analysis. This quality assessment made sure that high-quality and pertinent
research only informed the synthesis.

Table 1
Search keywords used in SLR.
Category Keywords
General IDS Intrusion detection system, IDS, network security, cybersecurity
Machine learning Machine learning, deep learning, supervised learning, transfer
learning
Optimization Feature selection, hyperparameter tuning, Bayesian optimization,
neural architecture search
Adversarial defense Adversarial attacks, adversarial robustness, ensemble

defense,gradient-based attacks
Emerging technologies  Blockchain in IDS, quantum computing IDS, federated learning,
IoT security

With this rational step-by-step approach, this review work ensures an impartial,
comprehensive fusion of recent advances and challenges in IDS research.

3. Taxonomy of IDS approaches

Figure 4 illustrates a conceptual taxonomy framework that categorizes IDS ap-
proaches along five basic dimensions: data type, detection method, technique, en-
vironment, and addressed challenges. The structure supports the organization of
the complex area of intrusion detection research. Data types cover sources such
as network, host, 10T, and cloud industrial control systems. Detection methods are
categorized as signature based, anomaly based, and hybrid techniques. The model
also highlights the diversity of methods applied in IDS, such as machine learning and
deep learning, optimization, Explainable Al (XAI), blockchain, and quantum comput-
ing. The environment category encapsulates deployment settings, such as centralized,
distributed, and edge computing. Finally, the challenges that these systems face vary
from real-time detection and false positives to imbalanced data and explainability.
This conceptual taxonomy serves as a standard against which the scope and direction
of contemporary IDS research can be assessed.

4. Optimization techniques for IDS

Cyber threats have evolved and so need advanced optimization in modern IDS. These
advancements are focused on improving detection accuracy, reducing computational
overhead, and real-time response. Recent research has shown great progress in feature
selection algorithms, hyperparameter tuning, and architectural optimization resulting
in more efficient and effective IDS. Evolutionary algorithms, swarm intelligence, and
ML techniques have changed the way IDS systems process and analyze network traffic
traces.

4.1. Feature selection algorithms

Network traffic complexity has grown exponentially and feature selection is key for
modern IDS. Recent studies have shown great results through various evolutionary
and swarm intelligence approaches.
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Figure 4: Conceptual taxonomy framework of IDS approaches based on data type, detection
method, technique, environment, and addressed challenges.

4.1.1. Genetic algorithms

Genetic Algorithm (GA) is a bio-inspired optimization technique used in IDS to
select relevant features and optimize detection processes. By mimicking natural
selection, GA improves IDS accuracy and reduces computational complexity in high-
dimensional data. In reference [62], the researchers an enhanced GA-based feature
selection method for intrusion detection systems, with 99.80% accuracy on UNSW-
NB15 and Bot-IoT datasets. Their method used a new fitness function based on
feature correlation and parameter tuning, which improved classifier accuracy. The
authors, in reference [37], developed a hybrid IDS by combining a GA-based feature
selection method with Random Forest, with better detection accuracy and efficiency
on high-dimensional data.

4.1.2. Particle swarm optimization

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that
iteratively explores a search space by simulating the behavior of a swarm of particles.
Each particle is a candidate solution and moves in the search space according to its
position and velocity vectors which are influenced by both local and global experiences.
In reference [111], the authors introduced PSO variants (PSOVA1 and PSOVA2) to solve
premature convergence and local optima in IDS. Their PSO variants performed well in
feature selection tasks on 13 datasets. PSOVA1 achieved 5.7% accuracy improvement
over classical PSO methods and PSOVA2 achieved 98.3% classification accuracy in
high dimensional datasets. It shows its better feature selection and classification
ability. Similarly, the researchers in [118] proposed multi-objective PSO with Fireworks
Algorithm (FA) and size-double archiving. Their approach showed a 12.5% speed up
in convergence and better diversity in solutions. Tested on standard benchmarks
ZDT and DTLZ, their model approximated the Pareto front with over 95% accuracy
in high-complexity multi-objective problems. PSO’s effectiveness in IDS has been
verified through comparative studies with other nature-inspired algorithms. Research
has shown that PSO-based methods generally outperformed genetic algorithms and
ant colony optimization in terms of computational efficiency and solution quality for
high-dimensional feature selection tasks. PSO’s parallel nature makes it suitable for
real-time IDS where rapid response to emerging threats is critical.

4.2. Hyperparameter tuning
Hyperparameter tuning is key to optimizing machine learning models in IDS as
it directly impacts their ability to detect anomalies. Traditional methods like grid
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search and random search are resource-hungry and not efficient for large and complex
parameter space. Recent advancements like Bayesian optimization (BO) have brought
in more efficient and automated ways to balance the exploration of new configurations
with the exploitation of known optimal settings. Hybrid methods that combine feature
selection and hyperparameter tuning make model parameters more relevant and
improve overall performance. These modern methods make the tuning process faster,
adaptive to real-time data changes, and more effective in handling complex decision
landscapes.

4.2.1. Bayesian optimization

Bayesian optimization is a great tool for optimizing complex functions, especially for
hyperparameter tuning in IDS. It explores the parameter space, balancing exploration
and exploitation. This results in better model performance and efficient resource
usage. In reference [112], the researchers combined Bayesian optimisation with a
Light Gradient Boosting Machine (LightGBM) for intrusion detection. Their approach
improved anomaly detection by 96.3%, reduced false positives by 15%, and sped
up training by 25%. Similarly, the authors in reference [23], combined Bayesian
hyperparameter optimisation with feature selection for anomaly-based IDS. This
increased detection accuracy to 94.7% and reduced false positives by 18%. And
increased detection rates by 23% on benchmark datasets. This shows how important
BO is utilized for improving IDS model accuracy and efficiency especially when dealing
with multi-dimensional data and complex decision-making spaces.

4.2.2. Neural architecture search

Neural Architecture Search (NAS) is an automated way to design optimal neural
network architectures for specific tasks and datasets. In IDS, NAS is used to improve
performance by optimizing hyperparameters like layer configurations, activation func-
tions, and model depth. By automating architecture design NAS reduces manual
intervention and improves detection accuracy while minimizing false positives and
computational cost. A study of [66], came up with an efficient NAS framework based
on evolutionary computation and got a 40% reduction in architecture search time.
They used a weight-sharing supernet to speed up the evaluation phase and got the
optimized architecture parameters. This method worked well in complex environments
and got 96.2% detection accuracy and 18% reduction in false positive rate in network-
based anomaly detection. The authors in reference [60], proposed a multi-objective
NAS framework using a bi-population evolutionary algorithm with a weight-sharing
supernet. By addressing the “small model trap” through bi-population communication,
their method found diverse architectures and got 95.7% detection accuracy and 21%
improvement in computational efficiency. Their experiments proved the method works
well in large-scale search space with complex data distribution. Both papers show
the importance of NAS in IDS, they highlight how NAS can find optimal network
architectures to improve anomaly detection and reduce computational cost.

Table 2 shows the comparison of four key optimization techniques, such as GA, PSO,
BO, and NAS in the context of IDS. GA achieved a 2.1% reduction in false positives,
reaching an accuracy of 97.30% on the UNSW-NB15 dataset. PSO, with its improved
variants, showed a 5.7% performance boost over classical PSO, achieving 98.30% ac-
curacy with faster convergence on high-dimensional datasets. BO demonstrated a 30%
reduction in computational cost while maintaining a detection accuracy of 96.30%.
Lastly, NAS provided a 40% reduction in search time, achieving an accuracy of 96.20%.
These techniques highlight significant advancements in optimizing IDS performance
across different metrics such as accuracy, computational efficiency, and search speed.
Such optimization techniques as GA, PSO, BO, and NAS enhance the performance
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Table 2

Comparison of some of the key optimization techniques.
Method Key improvement Accuracy References
Genetic algorithm (GA) Achieved 2.1% fewer false positives 99.80% [37]

on UNSW-NB15 dataset

Particle swarm optimization (PSO) Achieved 5.7% improvement over 98.30% [111, 118]
classical PSO with faster conver-
gence, reaching 98.30% classifica-
tion accuracy on high-dimensional
datasets

Bayesian optimization Reduced computation cost by 30% 96.30% [112]
while maintaining detection accu-
racy

Neural architecture search (NAS) Accelerated search time by 40%, 96.20% [66]
achieving competitive detection per-
formance

of IDS through handling intrinsic issues such as high-dimensional feature selection,
computational overhead, and real-time responsiveness. GA performs efficient selection
of beneficial features, which enhances detection accuracy and reduces false positives.
PSO improves convergence rate and increases classification accuracy, with efficiency
on high-dimensional data. BO optimally adjusts hyperparameters with little computa-
tional expense, guaranteeing efficient use of resources. NAS automates the process of
neural network design, reducing human effort and optimizing the detection models for
complex environments. Together, these techniques strike a balance between accuracy,
speed, and efficiency, making modern IDS more resilient to evolving cyber threats.

4.3. Data preprocessing

Sophisticated data preprocessing techniques in IDS serve important functions in
attaining high detection accuracy through the resolution of class imbalance and high
dimensionality problems. More specifically, feature selection techniques, such as
novel wrapped feature selection based on the whale optimization algorithm, managed
to attain high reductions of feature sets without loss of information with up to 99.62%
accuracy in Distributed Denial-of-Service (DDoS) detection [5]. Furthermore, methods
such as the Synthetic Minority Oversampling Technique (SMOTE) and its variations
have been used to counteract class imbalance, enhancing the performance of models
on minority classes, with a dual-channel feature extraction model recording 95.11%
accuracy [119]. In addition, the combination of dimensionality reduction techniques,
including Principal Component Analysis (PCA) with auto encoders, has been found to
increase classification accuracy by extracting both linear and non-linear relationships
in data [105]. Together, these preprocessing techniques highlight the need for feature
selection optimization and data imbalance handling to refine IDS performance [83].

Among the most widespread data quality issues encountered in IDS preprocessing
are the occurrence of data leakage, mislabeled data, duplicates, overlaps, and spurious
links. Data leakage occurs when testing data indirectly influences the training process,
which causes overfitting and wrong model performance [25]. Inaccurate, mislabeled,
and inconsistent data can significantly affect the performance of machine learning
models, as has been shown through experiments indicating that duplications and
overlaps in data influence model performance based on the algorithm employed
[106]. Spurious connections may also emerge from the combination of various data
sources, making data representation complex and causing misinterpretations [57]. To
overcome these problems, measures like adopting strict data curation methodologies,
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eliminating duplicates and overlaps, and leveraging context information to recognize
spurious links are necessary [108]. These steps can make IDS models more reliable
and accurate, and consequently, their performance in intrusion detection can be
improved.

To combat major IDS issues such as class imbalance and high-dimensional feature
spaces, SMOTE and PCA are vital for enhancing model performance. SMOTE over-
comes the imbalance in IoT botnet datasets where malicious traffic is dominated by
benign traffic. By generating synthetic instances of the minority class, SMOTE averts
biased learning, resulting in enhanced detection rates of minority attacks and reduc-
tion of false negatives. On the other hand, PCA does data dimensionality reduction
of traffic data with minimal loss of meaningful information. Apart from improving
anomaly detection by elimination of noisy or redundant features, it also speeds up
model training and inference. All these techniques work together to assist in reducing
false positives as well as improving the IDS resilience under high-volume, complicated
network environments.

4.4. Hybrid approaches

Hybrid optimization techniques significantly enhance the IDS detection rate by
overcoming challenges such as high-dimensionality data, feature redundancy, and
real-time analysis requirements. For instance, hybrid feature selection technique
combination such as MI-Boruta [12] and SHapley Additive exPlanations (SHAP) [12]
enhances model performance through the identification of the most relevant features,
hence reducing computational complexity and enhancing accuracy. Additionally,
using ensemble learning methods, including stacking and hybrid bagging-boosting,
facilitates improved classification performance on diverse datasets with more than
98% accuracies [3]. Moreover, using optimization algorithms, including the Whale
Optimization Algorithm and genetic algorithms for hyperparameter optimization, im-
proves model efficiency and efficacy in detecting varied cyber threats, such as DDoS
attacks, ransomware, phishing, and botnet activities [94]. Together, these hybrid
solutions not only boost detection rates but also introduce resilience against emerging
cyber threats in contemporary networks.

Hybrid optimization algorithms can effectively minimize the incidence of false posi-
tives in IDS and network security in general. For example, Hybrid Breeding Optimiza-
tion (HBO) combined with novel feature selection strategies has been shown to be more
precise in intrusion detection with proper handling of dimensionality problems [115].
Likewise, the modified wrapper-based whale sine-cosine algorithm with a weighted
XGBoost classifier tackles class imbalance and optimizes feature selection for greater
precision and reduced false positives [71]. In addition, hybrid approaches leveraging
machine learning and deep learning, including Extreme Gradient Boosting (XGB)
and Convolutional Neural Networks (CNN), have reported promising performance in
keeping false acceptance rates low while correctly classifying attacks [19]. Apart from
this, Enhanced LSTM-RNN and chaotic optimization techniques have been utilized
to optimize the feature selection and classification processes and eliminate unneces-
sary false positives from heterogenous datasets [28]. All these methods as a whole
reflect the efficiency of hybrid optimization in network security and IDS performance
improvement.

5. Resilience against threats

The increasing sophistication of cyberattacks demands robust resilience mecha-
nisms in modern IDS implementations. Current research is focused on developing
adaptive systems that can detect and respond to new threats while being efficient.
Zero-day vulnerabilities, anomaly detection is the key, to detecting patterns that
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deviate from the norm. Transfer learning makes detection better by using pre-trained
models and applying them to new attack scenarios. Adversarial robustness is part
of resilient IDS. Techniques like adversarial training that incorporates adversarial
examples during training and gradient masking that hides model gradients make IDS
more resilient against complex attacks. Lightweight models for dynamic environments
like cloud and edge computing ensure real-time detection without sacrificing accuracy.

5.1. Zero-day attack detection

Zero-day vulnerabilities are hardware or software security vulnerabilities that the
vendor is unaware of and has not yet patched, making them their most promising target
for cyberattacks [2]. Zero-day vulnerabilities are exploited by hackers before their
developers can patch them, leading to potential data breaches, malware infections,
or takeover of systems [35]. Zero-day attacks are the most difficult in cybersecurity
as they are new and have no signatures. Modern IDS try to address this by using
techniques like transfer learning and unsupervised anomaly detection. These methods
help in detecting unknown attacks with high accuracy and low false positives [52, 120].

5.1.1. Transfer learning applications

In study of [97] proposed a deep transductive transfer learning framework that
achieved a 95% detection rate for zero-day attacks with 3% false positives. This
framework used domain adaptation to transfer knowledge from labeled datasets to
unlabeled target domains, reducing the need for large amounts of labeled data and
improving detection in real-world scenarios. In reference [96], the authors presented a
combined inductive and transductive transfer learning and achieved 92% accuracy in
detecting zero-day attacks across multiple network environments. Their model reduced
misclassification by 18% compared to traditional transfer learning approaches.

5.1.2. Advanced anomaly detection

In study of [120], proposed an unsupervised anomaly detection approach for zero-
day attacks. Using meta-learning and feature optimization, their approach achieved
93% accuracy with a 15% reduction in false positives. They also showed the scalability
of their model on large datasets and high performance under complex attack scenarios.
Similarly author [90] proposed a hybrid anomaly detection framework based on
Sub-Space Clustering (SSC) and One Class Support Vector Machine (OCSVM). They
achieved an 89% detection rate and 8% false alarm rate on the NSL-KDD dataset. SSC-
OCSVM also improved the computational efficiency by 22% compared to traditional
methods, making it suitable for real-time applications.

5.2. Adversarial robustness

As attackers are using more and more adversarial techniques to evade detection,
building robust defense is key. With adversaries using adversarial techniques to evade
detection, strong defenses are a must for modern IDS. These systems are designed to
counter adversarial threats with advanced defenses, improve detection, and reduce
vulnerabilities.

5.2.1. Advanced defense mechanisms

In reference [110], the authors proposed multi-layer filtering to defend against ad-
versarial attacks in image recognition. They got a 94.6% success rate in mitigating
adversarial effects while keeping the model’s accuracy. The filtering layers han-
dled various adversarial perturbations well, across datasets. Author [39] showed an
ensemble-based adversarial training framework that used adversarial examples from
four attack methods: Fast Gradient Sign Method (FGSM), Jacobian-based Saliency
Map Attack (JSMA), Projected Gradient Descent (PGD), and Momentum Iterative
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Method (MIM). Their ensemble classifier got 98.6% accuracy against unseen attacks
and outperformed individual models in robustness. By doing grid search and adver-
sarial diversity, the model reduced the false positive rate by 12% and showed high
adaptability across multiple datasets. These results highlight the need to integrate
defenses like multi-layer filtering and ensemble adversarial training to make IDS more
resilient. By improving detection and reducing false positives these methods address
the challenges of evolving adversarial tactics.

Table 3

Comparison of different strategies for IDS.
Defense strategy Detection rate False positive References
Transductive transfer learning 95% 3% [97]
Inductive + transductive learning 92% - [96]
Meta-learning optimization 93% 15% [120]
Hybrid SSC-OCSVM 89% 8% [90]
Multi-layer filtering 94.6% - [110]
Ensemble adversarial training 98.6% 12% [39]

The table 3 presents advanced IDS defense strategies. Transductive transfer learning
95% detection with 3% false positives, inductive and transductive learning 92% across
different environments. Unsupervised meta-learning 93% but 15% false positives.
Hybrid SSC-OCSVM 89% detection with 8% false alarm rate, good for real-time. Multi-
layer filtering 94.6% against adversarial attacks, ensemble adversarial training 98.6%
but 12% false positives. These approaches address IDS challenges, adaptability, and
precision.

6. Explainability and trust in IDS

XAl is the foundation of modern IDS, giving transparency and interpretability to
the detection process. Through XAl techniques like feature importance visualization,
security analysts get to see what's driving the detection decisions. This transparency
builds trust in the system and enables more informed and effective responses to secu-
rity threats [17]. Also, the models are interpretable which means IDS implementations
adhere to the legal and ethical frameworks. The integration of advanced visualization
tools like heatmaps and dependency plots gives the cybersecurity teams intuitive and
actionable insights into the IDS behavior so they can respond quickly to detected
anomalies [38, 76]. This XAl in IDS gives three main benefits: transparency and
trust in the decision-making process, compliance with regulatory standards, and
analyst understanding through advanced visualization. These three combined make
modern intrusion detection systems more effective and reliable. Figure 5 represents
the conceptual model of an XAl-based IDS.

6.1. Explainable AI

XAl is a key approach for building trust in IDS systems. In reference [18], the
authors proposed a hierarchical explanation framework that sped up analyst decision-
making by 40%. Their system provides multi-level explanations from high-level threat
assessments to technical deep dives. The framework works by presenting complex
detection decisions in an interpretable way while maintaining system performance. The
researchers [48], proposed a new explainable framework using feature neutralization,
with no extra computational overhead. Their method showed high transparency and
trustworthiness in various real-world applications. In reference [89], used ensemble
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Figure 5: A conceptual model of an XAl-based IDS architecture.

adversarial training technique for their proposed IDS, 94.6% success rate in mitigating
adversarial attacks and interpretability across models. XAI-IDS framework got 95%
accuracy in detecting network intrusions and provided explanations through global
and local metrics using SHAP and LIME, reducing false positives by 12% [18]. These
show how XAl in IDS improves detection accuracy, and reduces false positives and
interpretability, making IDS more robust and reliable.

6.2. Challenges and opportunities

Deep learning models in IDS are often black boxes where the internal decision-
making is hidden from security analysts and system administrators. While these
models are suitable for detecting network intrusions and new attack patterns, the
lack of transparency is a big problem for security teams who need to understand and
justify detection decisions, in security-critical environments where you need to explain
why specific network behavior was marked as malicious for proper incident response.
The trade-off between model performance and explainability is a big dilemma: more
complex models do better detection. Still, they are harder to interpret, and simpler
more transparent models miss more sophisticated attacks. Recent advances in
explainable Al have tried to address this problem but the balance between detection
and interpretability is still a key consideration in IDS.

6.2.1. Black-box models

DL based models are complex and act as black boxes with no transparency in
decision-making process. This lack of transparency makes them unusable, as security
analysts can’t trust and interpret the output. The opacity of models like deep neural
networks and ensemble methods makes it difficult for analysts to understand the
reasoning behind critical detection decisions which is a big barrier to their adoption
in real-world scenarios [89]. In reference [18], the authors stated that in high-stakes
domains like IDS, explainability is not just good to have but necessary as it gives
clarity on why specific intrusions are being flagged so that we can have actionable and
informed responses.

There is a trade-off between interpretability and performance in IDS models. Simpler,
interpretable models like decision trees are easy to understand but may lack the
detection accuracy of more complex black box models. While complex models may
give higher performance, explainability is necessary to build trust among users and
meet regulatory requirements. Balancing this is key to ensure IDS not only gives high
detection rates but also is transparent and accountable to their users [48].

6.3. Trust and adoption
Explainability is key to trust and gaining the adoption of IDS in cybersecurity.
Explainable IDS closes the gap between complex algorithms and human understanding
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by showing how decisions are made [45]. Clear outputs mean analysts can trust the
IDS predictions and the system. Visualization tools like feature importance plots
and dependency heatmaps make the system even more transparent, so professionals
can see why an intrusion was flagged. All of this means explainability is key to both
technical trust and organizational adoption of IDS so that they are effective, reliable,
and compliant with evolving cybersecurity threats [20, 101].

6.3.1. Building trust in IDS

Explainability builds trust in IDS by making their decisions transparent and under-
standable. Visualization tools like feature importance plots and dependency heatmaps
help in building trust, so cybersecurity professionals can make informed decisions.
Explainability bridges the gap between black box models and human understanding,
so IDS is more reliable in real-world scenarios [89].

6.3.2. Regulatory compliance

Explainable IDS helps organizations meet regulatory requirements like GDPR and
other data protection laws by making decisions interpretable and auditable. Author
[18] showed how XAI frameworks like SHAP and LIME provide detailed explanations for
detected anomalies so organizations can demonstrate accountability and compliance
during audits. These frameworks also reduce biases so ethical Al can be implemented
in high-risk domains. SHAP applies game-theoretic principles to fairly distribute
significance values among features, ensuring both global and local interpretability.
LIME, on the other hand, builds a simple model around a specific prediction by
perturbing inputs, providing fast but sometimes less stable explanations [33, 95].

7. ML and DL based approaches

Recent IDS advancements focus on better detection, fewer false positives, and
explainability. Feature selection methods like GA and PSO improve detection, GA up
to 99.8% [62], and PSO variants up to 98.3% [111]. Hyperparameter optimization with
BO reduced cost by 30% and increased accuracy to 96.3% [112]. Neural Architecture
Search (NAS) automates network design, 40% faster search, and up to 96.2% accuracy
[66]. Zero-day attack detection with transfer learning with 95% accuracy and 3% false
positives [97], anomaly detection with hybrid subspace clustering with 89% accuracy,
and low false alarm rates. XAl frameworks like SHAP and LIME strengthened IDS
with interpretable decisions with up to 94% accuracy and 12% fewer false positives
[39, 110]. These advancements solve modern cybersecurity challenges by making IDS
systems robust, efficient, and trustworthy.

Table 4 provides a brief summary comparing some of the existing IDS approaches.
GA-based feature selection is the best for overall accuracy and scalability, especially

Table 4
Performance comparison of the advanced IDS approaches.

: . Detection False positive Processing Scalability References
Key innovations

rate rate efficiency
GA-based hybrid feature selection 99.8% - Moderate Medium [62]
Enhanced PSO with FA 98.3% - High High [111, 118]
Bayesian optimization with LightGBM 96.3% 15% High High [112]
NAS with evolutionary search 96.2% 18% High High [66]
Transfer learning for zero-day detection 95.0% 3% Medium Medium [97]
Multi-layer filtering for adversarial defense 94.6% - Low Medium [110]
Ensemble adversarial training 98.6% 12% Medium High [39]

85


https://doi.org/10.55056/jec.885

Journal of Edge Computing, 2025, Vol. 4, Iss. 1, pp. 73-104 https://doi.org/10.55056/jec.885

for high dimensional data. By mimicking natural selection, GA selects the most
important features, reduces redundancy and computational complexity, and increases
the precision of intrusion detection. It's adaptable to complex data so it’s good for
various IDS applications. For adversarial robustness, Ensemble Adversarial Training
provides a good balance between accuracy and adaptability so it’s good for dynamic and
high-risk cybersecurity environments. Also, PSO with Fireworks Algorithm (FA) is very
efficient so it’s good for real-time systems that require fast and reliable performance.
These methods cover the different needs of IDS from precision and robustness to
efficiency and scalability.

7.1. Beyond performance matrics

The performance metrics are used to evaluate the efficiency, and effectiveness of
a process or a system. Performance metrics like accuracy, precision, and recall are
very important in evaluating IDS but it’s not sufficient enough for fully evaluating IDS
[1]. As a result, IDS can be evaluated beyond performance metrics like computational
efficiency, scalability, and energy efficiency.

7.1.1. Computational efficiency

The computational efficiency makes efficient and effective threat detection while
keeping the resource computation low in IDS [1]. Computational efficiency is the
capability of a system that performs its task by lessening computational cost, resource
computation, and time complexity while keeping good performance [113]. It improves
the detection process by keeping the complexity of the system low by selecting key
features that reduce the consumption of the resources and the time of processing
[34]. In the evaluation of IDS, computational efficiency performs feature selection and
classification with less time and memory keeping good performance. For evaluating
IDS, computational efficiency focuses on memory usage, power consumption, runtime,
and sand capability [6].

7.1.2. Scalability

The scalability in IDS is the ability of a system to handle increasing data load,
network traffic, data volumes, and growing cyber while maintaining performance
in different conditions. Because of this, scalability extends beyond performance
metrics in evaluating IDS. It also helps IDS to evaluate its complexity and different
environments [7]. The scalability ensures that IDS can maintain high accuracy
detection and low latency, expanding to different platforms and devices while effectively
handling real-time attacks [68].

7.1.3. Energy efficiency

The energy efficiency in IoT and resources constraint environment is the optimization
of energy consumption while maintaining the performance of the system with limited
power resources. It ensures a real-time robust detection of various threats [85].
For cyber security systems, energy efficiency balances the use of energy with the
ability of robust threat detection. By utilizing versatile computing platforms like
Graphics Processing Units (GPU), Central Processing Units (CPU), and specialized
accelerators, the system can efficiently reduce energy consumption and delays in
processing. It ensures efficient operations in environments where resources are
limited [80]. Energy efficiency in Internet of Things based IDS is crucial because
of the resource-constrained nature of IoT devices. Due to this, they depend on the
limited power of the battery and processing abilities [36]. Energy efficiency beyond
performance metrics in IoT and resources constraint environment evaluates IDS with
lower power consumption, and faster response of the system while using optimal
energy, accuracy detection, and response time [80].
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8. Challenges in IDS

Real-time detection in IDS refers to that particular system that can identify the cyber
threats and respond as soon as possible to take immediate action against threats to
mitigate the damages [91]. Several technical and computational challenges behind
achieving this goal are:

8.1. Technical challenges

This refers to the effective and efficient implementation of various barriers. These
difficulties arise from the complexity of network infrastructures like the hardware,
software, and communication protocols that enable computer network functionality
and the unpredictable nature of cyber threats. There are some key technical chal-
lenges, which are data complexity, the dynamic nature of various attacks, and class
imbalances in datasets.

8.1.1. Data complexity

Existing IDS publicly available datasets have some inadequacies that limit mean-
ingful research and development. One of them is that they represent not real attacks
in life, but instead, most of the datasets primarily consist of simulations of attacks
that do not capture real vehicular or network conditions [9]. For example, there are
no sophisticated types of attacks in existing Controller Area Network (CAN) datasets,
such as simple message injections that are not effective when performing detection
mechanism testing [107]. There are also predominantly old or no new threats in most
datasets and, therefore, their uses in existing security environments are limited [81].
In addition, a lack of rich and varied data, especially for evolving technologies such
as Software-Defined Networks (SDN), limits the creation of reliable IDS solutions [31].
As a result, researchers are not able to properly benchmark and test their systems,
making it crucial to have larger and more realistic datasets [56].

In a real-time IDS, data complexity is caused by the huge amount, speed, and
diversity of network traffic data which must be analyzed immediately. The network
traffic produced a huge amount of data with a wide range of attributes such as protocol
details, traffic patterns, user activity, and system logs [61]. The high dimensional data
might be necessary for conventional analytic techniques to handle this huge amount
of data. Modern networks create network traffic at an unusually high speed which
requires real-time processing capabilities to maintain handling the continuous flow of
data [61]. Network traffic also contains a range of data types, such as semi-structured,
unstructured, and structured data, which require flexible and adaptable analytical
techniques to handle.

8.1.2. Dynamic nature of attacks

It refers to the procedural of how cyber threats are continuously changing. Attackers
continuously create new approaches to prevent detection [15]. In this case, they
take advantage of weakness. Attackers quickly modify security measures and change
malware to prevent detection. Signature-based IDS face a critical threat from zero-
day attacks which target vulnerabilities that have not yet been discovered. Trained
attackers operate advanced continuous threats which are more complex and long
operations and it is mainly the problem for real-time IDS [15].

8.1.3. Class imbalance in datasets

It occurs when the normal network traffic significantly surpasses malicious activity
[21]. Because of giving preference to the majority class which is regular traffic, this
imbalance creates a serious issue since it makes it difficult to identify the minority
class which is malicious activity. To make up for the rarity of attacks, deep learning
models can mistake to identify the normal traffic as malicious [21]. This may result
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in a huge number of false alarms and it also overwhelms the security analysts and
disrupts regular operations.

8.2. Computational challenges

It refers to the realistic limitations and the limit of resources that occur during the
operation of real-time IDS. Due to limitations in processing power, a real-time intrusion
detection system needed to be in the system. It faces computational challenges,
including resource constraints, and scalability, due to this limitation in the system
and also to the available resources.

8.2.1. Resource constraints

It highlights a significant challenge in real-time IDS on resource-limited devices like
edge devices and IoT networks and these devices often prioritize size, cost-effectiveness,
and energy efficiency initially but they might not have enough processing capacity
to support complicated detection models [77]. This may make it more complicated
to implement advanced deep learning models and it may lack sufficient processing
power such as low CPU speed, limited cores, etc [77]. It can also lead to consequences
such as reduced testing accuracy.

8.2.2. Scalability

It refers to the capability of a system to maintain real-time performance and effec-
tiveness while the network data increases [41]. It only analyzes the large amount
of network traffic which is the number of data generated and transmitted across
networks. As network data increases in size and complexity, the number of traffic also
increases significantly [41]. It is a necessary part of real-time IDS for effectiveness
in modern networks. When a threat detection occurs in a system, then IDS can’t
efficiently handle the volume of data. To handle this situation, IDS must have to be
scalable so that it adapt to the dynamic nature of network growth and also ensure
continued protection against cyber threats.

9. Integration of blockchain and quantum computing in IDS

IDS mechanism is a vital part of network security which monitors malicious activity
and also policy violations. Cyberattacks are constantly happening and the attackers
always develop new methods to bypass existing security measurements. So, these new
threats and also technologies must require intrusion detection system adaption and
integration to better detection of cyberattacks and the development of security. Several
methods for IDS have been proposed for 10T security threats [117]. Table 5 represents
a summary of IDS designed for IoT security which is categorized by the threats
and address. A topology attack on Routing Protocol for Low-Power (RPL) which is
specifically rank attacks and local repair attacks that fall under the category of routing
attacks can be seen in reference [86]. Similarly, sinkhole and selective-forwarding
attacks has addressed in [49], target selective-forwarding attacks have shown in [99],
sinkhole attacks have also shown in [22], and wormhole attacks has focused on [8] and
all of these attacks are classified as routing attacks. In reference [100], the authors
also address topology attacks on Routing Protocol for Low-Power and Lossy Networks
(RPL), including rank, sinkhole, neighbor, local repair, and DIS attacks, and are again
categorized as routing attacks. In reference [42], the researchers presented simple
routing attacks (replay, drop, and insertion) along with bit flip, byte change, and field
change combined with a routing attack to simulate a man-in-the-middle attack, thus
falling under both routing attack and man-in-the-middle categories.
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Table 5
IDS proposals for 10T security threats.
Proposed system Detected attacks References
RPL topology attack IDS Topology attacks on RPL rank attack and [86]
local repair attack
IoT sinkhole/forwarding IDS Sinkhole and selective forwarding attacks [49]
IoT forwarding attack IDS Selective forwarding attacks [99]
IoT sinkhole attack IDS Sinkhole attacks [22]
IoT wormbhole attack IDS Wormbhole attacks [8]
RPL topology attack IDS Topology attacks on RPL rank, sinkhole, [100]
neighbor, local repair, and DIS attacks
IoT routing attack IDS Simple routing attacks, bit flip, byte [42]

change, and field change combined with
a routing attack

9.1. Blockchain for IDS models

IDS uses several methods to identify cyberattacks and these techniques face chal-
lenges in accurately detecting intrusions. It impacts both the IDS’s performance and
overall network performance. Currently, blockchain technology plays a significant and
impactful innovation in the professional world. It's constantly evolving in innovation,
functioning as a distributed ledger that stores information and establishes relation-
ships between disparate parties [4]. Its applications extend beyond its initial use cases
with adoption can be seen in fields such as healthcare, supply chain management,
and the IoT. The structure of a blockchain can be shown in figure 6. The initial
block in a blockchain is known as the genesis block and the subsequent blocks are
cryptographically which are linked and the blockchain itself is distributed across a
network of nodes. Fundamental of blockchain’s principle requires all network nodes
to maintain an identical copy which has been illustrated in figure 7. Upon creation, a
new block is broadcast to every node which independently verifies it. It validates the
transactions by using a consensus mechanism.

Blockchain technology in IDS improves security, trust, and transparency through
its tamper-evident and decentralized features [69]. Conventional IDS are based on
centralized databases that are exposed to cyber attacks and single points of failure, but
blockchain provides immutable logging of security events to prevent data tampering
[50]. Its distributed ledger enables secure real-time threat intelligence sharing among
various nodes, enhancing anomaly detection and response times. Smart contracts
also enable automatic threat mitigation so that proactive defense mechanisms can be
implemented [13, 67]. Adding blockchain to IDS can provide enhanced data integrity,
secure collaboration, and efficient protection against emerging cyber threats [98].

9.2. Secure communication channels

The rapid development of decentralized networks has led to the emergence of new,
robust, and lossless decentralized networks and the opening of new avenues for
secure communication. Blockchain refers to the methods and protocols employed to
ensure the confidentiality, integrity, and authenticity of data exchanged within the
blockchain network. Standalone optimization is a tool that is used to improve the
secure communication channels. For a secure communication system, standalone
optimization within the blockchain network is associated with several issues [39]. In
a distributed network, each node acts independently with limited knowledge of the
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Figure 6: Basic blockchain structure.
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Figure 7: An abstract design of IDS model with Blockchain technology.

overall system [51]. This makes it challenging to ensure that local optimization by each
node doesn’t produce unintended consequences. Due to this isolation, nodes’ actions
depend only on local data, hindering coordinated and unified responses to attacks.
Optimizing complex deep learning models in a distributed system such as federated
learning requires significant communication between nodes [51]. This can lead to
communication overhead, reducing system speed and throughput. Furthermore, this
inter-node communication during optimization can introduce security risks. Hackers
could exploit this to gain access and tamper with communication by injecting malicious
data, thereby affecting the training process. In a distributed network, sensitive data
might be able to be seen by individual nodes [51]. During optimization, privacy loss
concerns could be raised as local data could be exposed during model updates and
aggregation.

9.3. Blockchain-enabled immutable audit trails for secure IDS

The problem of ensuring the security and integrity of smart networks is multifaceted
while the processing of analyzing the specificity of the cyber security domain [58].
Immutable audit trails which are often facilitated by blockchain technology play a vital
role in enhancing the security and integrity of smart networks [58]. These are the key
security benefits offered by blockchain technology in the context of IDS. Blockchain-
based integrated identity framework has been illustrated in figure 8 it demonstrates
the interaction between external users, a service provider a blockchain network, a
decentralized application (DApp), and an authorization Application Programming
Interface (API) [114]. The DApp sends authentication requests to the authorization
API Users when service is requested. By checking the blockchain network, the user’s
identity is checked by the API. The service provider can gain access through the
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authorization API when the verification succeeds [114]. To give a secure, decentralized,
and transparent approach to management and access control access, this framework
uses blockchain technology.

External
Users

Service

Provider Blockchain

Network

Authorization
API

Figure 8: Blockchain-based integrated identity framework.

9.4. Quantum computing for IDS models

Quantum computing has the potential to revolutionize cybersecurity. In IDS, quan-
tum computing offers several methods for enhancing their capabilities such as enhanc-
ing pattern recognition, improving security analysis, etc. Quantum Neural Network
(@NN) is a specific application of quantum computing that helps in advanced IDS
capabilities. QNN architecture in IDS is a next-generation computational model that
applies quantum mechanics to improve security analysis and threat detection [47].
It provides faster processing, enhanced pattern recognition, and effective processing
of high-dimensional cybersecurity data using quantum parallelism, superposition,
and entanglement. Through the application of QNNs, IDS can identify advanced
cyber threats in real-time, learn dynamically to new patterns of attack, and lower
computational overhead, hence being more efficient than classical machine learning
algorithms [78].

The architecture of a basic quantum neural network can be seen in figure 9 which
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Figure 9: Architecture of QNN.
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is a computation model using principles of quantum mechanics. The entire process of
the QNN is included in the labeled box which acts on qubits from qO to q6. These are
the quantum equivalents of the classical bits with superposition and entanglement
that start with “Data Loading” where input data in their classical form get encoded
into quantum states using some “Feature Map”. This “Feature Map” is implemented
through a quantum circuit which is represented by the matrix U as inputs. Then the
encoded quantum information goes to the “Data Processing” part which is the core of
the QNN. Here, the quantum computation is done through a parameterized quantum
circuit which is called “Ansatz” which is represented by the matrix V as weights. These
parameters are optimized in the Ansatz during training to guide the performance
of the network. Finally, the “Measurement” stage extracts the processed quantum
information and converts it back into classical interpretable data. This measurement
collapses the quantum states into definite classical values: the output of the QNN.
It also shows the flow of information through the QNN from classical data encoding
via the Feature Map onto quantum processing by the Ansatz and finally to classical
output by measurement within the quantum domain of qubits [32].

10. Significance of IDS models in healthcare

Table 6
IDS implementations in healthcare.
Proposed system Challenge Solution References
Network-based IDS for Electronic health records Network IDS to monitor [65]
protecting electronic systems store sensitive traffic for malicious ac-
health records patient data which puts tivity such as unautho-
healthcare a risk for cy- rized access, malware,
berattacks. and data exfiltration.
Host-based IDS for se- Medical devices intercon- Host-based IDS on med- [75]
curing medical devices nected to hospital net- ical devices to monitor
works create entry points system activity, detect
for attackers. malware, and identify
unauthorized access.
Cloud-based IDS for The security of remote Cloud-based IDS moni- [87]
monitoring remote pa- patient monitoring sys- tor remote patient mon-
tient monitoring sys- tems is crucial for han- itoring systems for data
tems dling sensitive patient exfiltration.
data.
Behavioral-based IDS Insider threats, such as Behavioral IDS moni- [14]

for detecting insider

threats

intentional and acciden-
tal, can pose significant
risks to healthcare data
security.

tors user activity to de-
tect anomalous behav-
ior indicative of insider
threats.

IDS plays a significant role in various practical sectors such as healthcare, finance,

critical infrastructure, etc. The rapid growth of IoT devices in healthcare has intro-
duced numerous security challenges [24]. Cyberattacks including Distributed Denial
of Service (DDoS), I0T reconnaissance, man-in-the-middle (MitM) attack injection
attacks, and other malware threats have surged among devices with diverse proto-
cols and limited computing power [74, 79]. IDS are vital for protecting healthcare
organizations from cyberattacks by protecting patient data in critical systems. Some
practical implementations are mentioned in table 6 this summarizes various proposed
IDS implementations in the healthcare domain where Network IDS are suggested for
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protecting electronic health record systems due to the sensitive nature of patient data
and it has been stored within them which is highlighted in [65]. On the other hand,
Host-based IDS are proposed to secure interconnected medical devices which can
become risky points for attackers which has also been mentioned by [75]. Cloud-based
IDS are recommended for monitoring remote patient monitoring systems to prevent
data exfiltration [87]. Finally, behavioral-based IDS are suggested to mitigate the risk
of insider threats in both intentional and accidental [14].

11. User-centric IDS design

The user-centric IDS design integrates the behavior and the needs of the users to
build security measures. It ensures that the security system performs effectively with
users interaction with the systems. It makes sure that the measures are not only
technological but also designed to match user needs which enhances the effectiveness
of the security [82].

11.1. Tailoring IDS to specific end user needs

Tailoring IDS to specific end-to-end user needs involves making security measures
that match different responsibilities, roles, and unique requirements for different
users in an organization. This user-centric approach enhances security by aligning
monitoring and detection with the user’s access level. Tailoring IDS can improve the
threat detection accuracy and Integrate robustness to the security [76].

Figure 10 depicts explainable IDS and the interaction of X-IDS with the IDS developer,
security analyst, and investor. The IDS developer uses X-IDS for local explanation to
understand how the system works and for a global explanation of the overall behavior
of the system. Then the IDS developer evaluates the accuracy and performance
efficiency. The security analyst uses X-IDS for response suggestions for solving threats
detection, then a local explanation to understand anything and self-audit for how
well the system is working. The investor provides funding to the X-IDS and receives
information about the system’s accuracy and performance efficiency to assess the
system and global explanation for the overall behavior of the system [76].
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Figure 10: Tailoring IDS to specific users.
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11.2. Tailoring IDS for corporations

The tailoring IDS for Small and Medium Enterprises (SME) versus large corporations
needs to system to adapt to individual organizations’ requirements and resources. For
SMEs, IDS solutions can be user-friendly and are easy to deploy and implement a
system with minimal configuration. On the other hand, large corporations require
IDS solutions that are more advanced and customizable integrating complex security
policies like extended detection and response [46].

11.3. Interface dsign

The user-friendly interface in IDS makes the security measures simple for the user
to interact with. The interfaces make the security process easy, which ensures users
don’t face complexity and get disrupted in security procedures making the systems
more efficient for the users to use. As a result, it improves compliance, reduces
mistakes, and makes the user consistently follow the security protocols [63].

11.4. Automated response system in IDS

The automated response system in IDS detects and responds to the threats of
security automatically which reduces manual intervention. These systems block
malicious traffic and disconnect compromised devices which gives efficient automated
response to security occurrence [82]. In user-centric IDS design, automated response
systems enhance security measures by handling threats quickly. By integrating with
IDS, it provides real-time response to security incidents which reduces response time,
giving the ability the system to manage security threats effectively and autonomously
making it effective for users [93].

12. Regulatory and ethical approaches

The regulatory considerations are the set of laws and rules for making sure that
technologies are used securely and legally. Ethical considerations are the moral
principles for privacy protection in technology usage [27]. Regulatory and ethical
considerations for IDS require to follow data protection rules and privacy laws so that
user privacy doesn’t get violated by data monitoring. Ethical considerations in IDS
focus on preventing unauthorized access. The security needs must be balanced with
ethical obligations to protect the user’s data. It ensures that IDS operations treat all
users equally while lessening the risks of misuse [89].

12.1. Compliance with cyber security regulation

Compliance with cyber security regulations is very important for deploying IDS to
protect data and keep secure privacy of the data. Compliance with cyber security
regulations like the General Data Protection Regulation (GDPR), Al Act, and European
Union (EU) Cyber security strategy are vital while using IDS for protecting the privacy
and security of data [88]. GDPR ensures that the personal data that are handled by
IDS are protected while keeping the privacy of the user’s data [64, 70]. Al act ensures
Al system in IDS is fair and protects the user’s rights [109]. EU cyber security strategy
helps to make the IDS and network security more secure against cyber threats [27].
In IDS, compliance ensures that the user’s data is not being misused, protecting the
privacy of data, and blocking unauthorized access also minimizes the threats. It also
provides awareness of cyber security and gives protection to data which builds a safe
environment [10].

12.2. Data privacy law

The data privacy law is important for regulating and managing IDS ethically by giving
rules for collecting and storing users’ personal information. Data privacy laws play a
big role in IDS by providing guidelines for managing personal data while maintaining
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protection against threats. It ensures that the privacy rights of the users are protected.
The law resolves by obtaining permission before collecting data and using personal
information which gives protection to data from unauthorized access [10].

12.3. Ethical concerns

The ethical concern in IDS for regulatory and ethical considerations focuses on
finding strong protection and keeping secured user privacy rights. The IDS collects
and analyses personal data. If these data are not handled properly, it can lead to a
violation of privacy and authorization surveillance [10]. The integration of Al in IDS is
increasing which raises ethical concerns like bias in Al models can give false results
and reduce transparency which makes it hard to explain the decision of IDS risking
the privacy of data. Al-based IDS are weak to hostile attacks where inputs can be
manipulated to evade detection. This can be solved by integrating XAl which can
improve transparency and fairness. It can reduce bias protect the privacy of the data
and improve the robustness of Al-driven IDS [73].

13. Conclusion and future works

Intrusion detection systems continue to be a cornerstone of contemporary cyber-
security with continued development to mitigate advanced threats in varied network
setups, i.e., 10T, cloud computing, and industrial control systems. The article exhaus-
tively reviewed the IDS methodology advancements with a focus on the fusion of deep
learning, federated learning, and hybrid optimization algorithms like GA, PSO, and
NAS. These methods have greatly enhanced IDS performance in detection accuracy,
scalability, and adaptability with minimal computation overhead. Moreover, XAl has
played an important role in solving the long-standing problem of IDS interpretability,
promoting trust, and enabling regulatory compliance in security-critical applications.

Despite all these developments, several challenges continue to exist. Real-time
detection is still a top priority, particularly in scenarios with high data velocity, where
IDS needs to work with very low latency. IDS robustness against adversarial attacks is
another top concern, which demands strong defense strategies like adversarial training
and multi-layer filtering. Additionally, although blockchain and quantum computing
present promising directions for the improvement of IDS security, scalability, and
decentralization, their real-world implementation is confronted with challenges of
computational expense and infrastructure sophistication.

Future work needs to emphasize enhancing IDS models to detect attacks in real
time and make them more resilient to resist new attacks, such as zero-day attacks
and adversarial attacks. Class imbalance in IDS data sets is a reality because it has a
direct impact on the detection accuracy as well as decreases false positives. Moreover,
designing more energy-aware and lightweight IDS models specifically tailored for
resource-limited setups, such as IoT and edge computing, will also play a vital role in
making IDS more practical. The use of more advanced XAl frameworks also stands to
improve the interpretability of IDS without affecting performance, thereby rendering
IDS decisions explainable and actionable.

Real-world adoption is still a fundamental concern; thus, next-generation research
must focus on real-world case studies, especially in high-stakes domains like health-
care, finance, and industrial control. Academia-industry convergence will be necessary
for optimizing IDS frameworks toward meeting real-world security needs without sac-
rificing ethical and regulatory compliance. Advancing IDS research in this direction
will make a significant contribution towards strengthening cybersecurity frameworks
and robustness against the evolving threat landscape of cyber attacks.
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