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Elements of computer modelling: 12 studies for
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Illia O. Teplytskyi

Kryvyi Rih State Pedagogical University, 54 Universytetskyi Ave., Kryvyi Rih, 50086, Ukraine

Abstract. This paper is a continuation of our foundational series on computer
modelling [1] and presents the main stages of the modelling process, from initial
problem formulation through computational experimentation to model validation.
We examine the critical process of model creation, emphasising the necessity of
simplifying assumptions and the fundamental contradiction inherent in modelling:
the need to simplify whilst retaining essential features. Through practical examples
using spreadsheet software, we demonstrate computational experiments with elec-
trical circuits, both direct and alternating current, illustrating how mathematical
models can be transformed into computer models for investigation. The paper
addresses key technical considerations including the discretisation of continuous
processes, computational errors in computer calculations, and basic numerical
methods. We provide detailed algorithms for implementing these models in spread-
sheet environments, making the concepts accessible to beginners. The validation
process for ensuring model adequacy is discussed, along with strategies for testing
models against known behaviours. This systematic approach to modelling stages
provides learners with a practical framework for developing their own computer
models across various domains, reinforcing the pedagogical principles established
in the first study of this series.

Keywords: modelling stages, computational experiment, model validation, simplify-
ing assumptions, discretisation, electrical circuits, spreadsheet modelling, numeri-
cal methods, model adequacy, pedagogical framework

2. Main stages of modelling
2.1. Creating a model

In practice, the starting point of modelling is some situation that poses a problem to
the researcher for which an answer must be found. However, the use of words such
as “problem” and “answer” in modelling can mislead the beginner. You will learn: 1)
why simplifying assumptions are necessary in modelling; 2) why it is very important to
distinguish between essential and secondary properties of an object; 3) what the main
contradiction in modelling consists of.

2.1.1. Problem formulation and content of the answer
Real situations are very rarely clearly defined, since, as already noted above, the

complex interactions of the object under study with its environment lead to significant
difficulties in their description. Experience shows that in many cases it is practically
impossible to immediately formulate a problem clearly enough to enable model creation
based on it. The process of problem genesis, called problem formulation, effectively
reduces to a series of successive reformulations of the condition – changes to its
narrative basis by replacing real objects with their abstract images. Thus, even in the
example about estimating the length of wire, we replaced buildings and the earth’s
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surface with straight line segments, and only then did the problem reduce to finding
the length of the hypotenuse of a right-angled triangle.

Problem formulation concludes with a textual and mathematical description of the
problem condition. The verbal formulation of the problem together with explanatory
drawings or diagrams is called a conceptual (content) model, whilst the relationships
between object characteristics (parameters), written in the form of mathematical
expressions, form the mathematical model. Typically, at the problem formulation
stage, the types of initial data and modelling results are established.

The answer (that is, the result of model investigation) should, as already noted: a)
enable the identification of new properties of the object and prediction of new results;
b) facilitate decision-making; c) implement automatic control.

The answer in modelling is not necessarily what we are accustomed to in school
mathematics, physics, or chemistry: 𝑥 = 17, 𝑅 = 400 Ω, or 𝑀 = 98× 10−3 kg/mol, etc.
Modelling results can additionally be tables of numbers, symbols or texts, correspond-
ing diagrams, graphs, drawings, and so on.

The obtained answer must be analysed. This is performed by people (specialists),
who draw the necessary conclusions.

2.1.2. Simplifying assumptions
Already at the problem formulation stage, the process of identifying the main

(essential) features of the object proceeds. Some of its features appear important
to the researcher, whilst others appear secondary. Rejection of features that are
non-essential in the researcher’s opinion leads to simplification and idealisation. The
description of the object is formulated in the form of simplifying assumptions, which,
together with explanatory drawings, form part of the narrative basis of the future
conceptual model.

Returning again to the previously considered example about estimating the length of
wire, we note that, strictly speaking, determining the wire length using the Pythagorean
theorem is not entirely correct due to the sagging of the wire as an extended body that
has some mass and is fixed at the ends. Using the given formula assumes that the
mass, and consequently the sagging of the wire, can be neglected. For this reason, the
obtained result should be considered only as an estimate of length, as stated in the
condition. Simplifying assumptions always determine the existence of certain limits of
applicability for any model.

2.1.3. The main contradiction in modelling
In modelling, there always exists a serious contradiction: on one hand, modelling

is impossible without simplification, without neglecting secondary factors that are
non-essential for some specific research, whilst on the other hand, there is always a
risk of “oversimplifying” the model, discarding along with secondary features some
important characteristics of the object. Equally undesirable is presenting some
secondary property as important. We must agree that it is difficult to understand
which properties are important and which are secondary until this object has been
studied. If the object has been studied, then there is no need to develop a model. As a
rule, this is the most responsible stage in creating a model.

Let us turn to another example. Accepting the assumption that the population
growth of some settlement is proportional to the number of inhabitants, we obtain
a mathematical model that proves correct only in a very rough approximation. If
we account for the number of elderly people and children, the model undergoes
corresponding complications. And if we include in consideration such factors as
education level, number of working women, welfare level, etc., then the mathematical
model becomes so complex that constructing and investigating it becomes quite
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difficult. However, even when accounting for these factors, the model may prove
far from reality: after all, it does not yet account for a whole range of random
factors – population migration, marriage and divorce statistics, percentage of people of
reproductive age, etc.

The researcher’s goal is to find the “golden mean”: to create a model of the process
without depriving it of its most important properties. There are no specific recommen-
dations here. This is the sphere of personal experience, professional intuition based
on it, level and quality of education, intellect and creativity of the researcher. Modelling
is an art and, like any other art, it can be mastered only by constantly performing
exercises, that is, by constantly solving problems, only through analysis of others’ and
one’s own successful and erroneous actions.

2.1.4. Essential and secondary properties of an object
Different models can be assigned to each object depending on the research goal. For

example, if we take such a complex system as an animal population, then a model
of an individual animal as a biological being can be used to describe life processes.
For modelling animal behaviour in a group, the researcher will create a different,
ethological model (ethology is the science of animal behaviour and habits), and for
predicting the dynamics of population size changes over time, a completely different,
ecological model will be created. In this case, object properties that are essential when
constructing one model may prove secondary when constructing another.

Thus, animals’ communicative abilities should be considered in the behavioural
model of a flock, but these abilities add almost nothing essential to the ecological
model of the flock. In turn, the reproduction coefficient, essential for the ecological
model, is not so important for the behavioural model.

However, secondary properties of an object can become essential when deepening
or improving the model in order to make the model more adequate to the original
object. In particular, in the simplest gas model called “ideal gas”, the interaction of
molecules at a distance is neglected, that is, their potential energy, but already in the
first approximation to a real gas – the Van der Waals model – the interaction of gas
molecules and their sizes become essential factors.

2.2. Computational experiment
In mathematical modelling, questions are posed to the mathematical model. And

whilst in modern complex and expensive experimental installations, changing some
conditions can lead to significant technical and economic costs, mathematical models
are free from these disadvantages. To acquire practical skills, we will together conduct
the first virtual investigation of simple electrical circuits.

The most common way of presenting a mathematical model is a system of certain
equations with the data necessary for its solution: initial and boundary conditions, nu-
merical values of coefficients in the equations, etc. By varying these, one can conduct
a detailed study of processes, identify their main patterns, evaluate the influence of
various factors on them, that is, obtain information analogous to that obtained during
a physical experiment. However, in this case, instead of an experimental installation,
we use a computer, and instead of the physical object being studied – its mathematical
model. Such studies are called computational experiments. This stage constitutes the
main content of solving any practical problem using a computer. Its essence most
often reduces to repeating similar series of calculations when changing input data,
that is, to searching for an answer to the question “What will happen if...?”

Computational experiment today is a modern technology of theoretical research based
on experimentation with a mathematical model using a computer.
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Research of computer mathematical models of real objects often involves identify-
ing the type of functional dependencies between the characteristics of these objects.
Such work, as already noted, is conveniently conducted in specialised modelling
environments – mathematical packages adapted for certain subject areas of knowl-
edge (technology, economics, accounting, etc.). As mentioned above, our manual is
oriented towards using the universal environment familiar to all schoolchildren, called
Spreadsheets, in which it is easy to construct graphs of functional dependencies.

To illustrate what has been said, let us consider two examples from physics on
investigating direct and alternating current electrical circuits by studying their mathe-
matical models.

2.2.1. Investigation of a closed direct current electrical circuit
The electrical circuit diagram is shown in figure 1.
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Дослідження замкнутого електричного кола постійного струму 

Схема електричного кола подана на рис. 2.1. 

Рис. 2.1. Замкнуте коло постійного струму 

Елементами кола є: джерело струму з електрорушійною силою ξ 
і внутрішнім опором r, споживачем є змінний резистор (реостат) 

опором R. Крім того, таке коло прийнято характеризувати ще низкою 
параметрів: силою струму I в колі, напругою U на кінцях споживача, 

потужністю споживача Ркор, коефіцієнтом корисної дії η кола. Опо-

ром сполучних проводів нехтуємо, вважаючи його значно меншим за 
суму R + r – повний опір кола. 

Метою дослідження поставимо вивчення залежності перерахо-

ваних величин від опору R споживача шляхом створення таблиці та 
побудови відповідних графіків. 

Схема кола на рис. 2.1. та два абзаци, що йдуть за нею, – ні що 

інше, як концептуальна (змістова) модель. 
Побудова математичної моделі. Основу для побудови математи-

чної моделі складають відомі співвідношення: 

– закон Ома для повного кола постійного струму 
rR

I
+

=


, 

а також вирази, за якими обчислюються 
– напруга на кінцях споживача U = IR; 
– корисна потужність струму Ркор = I2R = IU; 

– коефіцієнт корисної дії 
rR

R

+
= . 

Характеристики джерела струму – ЕРС ξ и внутрішній опір r – 
будемо вважати відомими і такими, що не змінюються при зміні всіх 

решта параметрів кола, тобто константами. 
Отже, математичною моделлю задачі є наступна система чоти-

рьох рівнянь: 

R 

ξ, r 

R 

Figure 1: Closed direct current circuit.

The circuit elements are: a current source with electromotive force 𝜉 and internal
resistance 𝑟; the consumer is a variable resistor (rheostat) with resistance 𝑅. Addition-
ally, such a circuit is customarily characterised by several more parameters: current
strength 𝐼 in the circuit, voltage 𝑈 across the consumer terminals, consumer power
𝑃useful, circuit efficiency 𝜂. We neglect the resistance of connecting wires, considering
it significantly less than the sum 𝑅+ 𝑟 – the total circuit resistance.

The aim of the investigation is to study the dependence of the listed quantities on
the consumer resistance 𝑅 by creating a table and constructing corresponding graphs.

The circuit diagram in figure 1 and the two paragraphs following it are nothing other
than a conceptual (content) model.

Construction of the mathematical model. The basis for constructing the mathe-
matical model consists of the known relationships:

• Ohm’s law for a complete direct current circuit: 𝐼 = 𝜉
𝑅+𝑟 ,

as well as expressions by which the following are calculated:

• voltage across the consumer terminals: 𝑈 = 𝐼𝑅;
• useful current power: 𝑃useful = 𝐼2𝑅 = 𝐼𝑈 ;
• efficiency coefficient: 𝜂 = 𝑅

𝑅+𝑟 .

The characteristics of the current source – EMF 𝜉 and internal resistance 𝑟 – will be
considered known and unchanging when all other circuit parameters change, that is,
constants.

Thus, the mathematical model of the problem is the following system of four equa-
tions: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐼 = 𝜉
𝑅+𝑟

𝑈 = 𝐼𝑅

𝑃useful = 𝐼2𝑅

𝜂 = 𝑅
𝑅+𝑟
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where, as just noted, the quantities 𝑅, 𝑈 , 𝐼, 𝑃useful, 𝜂 are variables, and 𝜉 and 𝑟 are
constants.

After creating the mathematical model, let us proceed to the computer model. For
this, in the modelling environment – spreadsheets – we implement the following

Algorithm for further work:

1. Create a table according to the template:

A B C D E F G
1 𝑅 𝐼 𝑈 𝑃useful 𝜂 (efficiency) Given:
2 𝜉, V = 3
3 𝑟, Ω = 0.5
... ... ... ... ... ...

2. Enter variable names (parameters) in the first row.
3. Fill columns F (“Given:”) with names and G with input parameter values.
4. Record the content of cells to be filled from the keyboard – key cells of the table:

Cell Formula/Number Comments
A2 0
A3 =A2+0.1
B2 =$G$2/($G$3+A2) copy to B3
C2 =B2*A2 copy to C3
D2 =B2*C2 copy to D3
E2 =A2/($G$3+A2) copy to E3

5. Copy formulas from cells B2, C2, D2, E2 to the third row, as indicated in the
comments.

6. Select cells from area A2:E3 (second and third rows) and increase precision to
two decimal places (Format cell → “Number” tab → type “Number”, set “Decimal
places” – 2).

7. Copy all formulas from the third row to the next 45 rows.
8. Using data from columns A, B, C, D, E, construct graphs of the dependencies

of variables 𝐼, 𝑈 , 𝑃useful, 𝜂 on consumer resistance 𝑅 (external circuit section) in
one coordinate plane, as shown in figure 2.

A B C D E F G
1 𝑅 𝐼 𝑈 𝑃useful 𝜂 (efficiency) Given:
2 0.00 6.00 0.00 0.00 0.00 𝜉, V = 3.00
3 0.10 5.00 0.50 2.50 0.17 𝑟, Ω = 0.50
... ... ... ... ... ...

For this purpose, we select all data in columns A, B, C, D, E and access the chart
wizard from the main menu. On the “Recommended Charts” tab, we choose type
“Scatter”, since this type ensures representation of functional dependence of the form
𝑦 = 𝑦(𝑥). By default, data from the leftmost selected column (in this case column
A) become arguments, and no graph line is constructed for this data (!). Thus, by
selecting five columns, we obtain four lines for the “Scatter” type, whereas for the
“Line” type – five lines, including the graph 𝑥 = 𝑥(𝑥), which proves clearly superfluous.

Analysing fig. 2, we can draw the following conclusions:

1) when consumer resistance 𝑅 increases, current strength 𝐼 in the circuit monotoni-
cally decreases to zero;
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Figure 2: Graphs of dependence of 𝐼, 𝑈 , 𝑃useful, 𝜂 on consumer resistance 𝑅.

2) the maximum current value corresponds to the condition 𝑅 → 0 – this is the short
circuit mode;

3) voltage 𝑈 across the consumer terminals monotonically increases, approaching the
value of the current source EMF 𝜉;

4) efficiency also increases monotonically, approaching 1 (100%), however, at this
point the current in the circuit equals zero, and such a mode has practically no
meaning;

5) only useful power changes non-monotonically: its value first increases and then
decreases, so that the graph of dependence 𝑃useful = 𝑃useful(𝑅) has a maximum,
and maximum useful current power develops when 𝑅 = 𝑟 = 0.5 Ω (when consumer
resistance – the external circuit section – equals the internal resistance of the
current source). However, the efficiency value is not 100%, but only 50%. This
conclusion proves valid for any electrical circuits. It can be obtained without a
computer, using exclusively analytical methods, but now we have the opportunity
to verify this fact on a computer model.

Questions and exercises

1. Note: current strength 𝐼 reaches maximum value when 𝑅 → 0 (“short circuit”). In
this case, voltage 𝑈 across the consumer terminals approaches zero.
Under what conditions is this a very dangerous mode of electrical circuit opera-
tion, accompanied by intense heat release in various circuit elements, particularly
in the current source, leading to its destruction? And when is this mode com-
pletely safe?

2. Model the replacement of the current source with a new one having the same
EMF but with internal resistance 𝑟 = 1.0 Ω.

2.1. How will this affect the maximum values of the variables?
2.2. Repeat the computational experiment, setting the current source EMF

𝜉 = 5.0 V and its internal resistance 𝑟 = 1.0 Ω.

3. Analytically investigate the following functions for extrema:
a) 𝑃useful = 𝑃useful(𝑅) = 𝜉2 𝑅

(𝑅+𝑟)2
;

b) 𝜂 = 𝑅
𝑅+𝑟 .
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2.2.2. Investigation of an alternating current circuit section
The mathematical model is constructed based on the following relationships:
𝐼0 = 𝑈0

𝑍 – Ohm’s law for an alternating current circuit section containing active
resistance 𝑅, inductance 𝐿, and capacitance 𝐶 (figure 3).
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Дослідження ділянки кола змінного струму 

Рис. 2.3. Схема досліджуваного кола змінного струму 

Математична модель будується на основі таких співвідношень: 

( )22

0
0

CL XXR

U
I

−+
=  – закон Ома для ділянки кола змінного 

струму, яка містить активний опір R, індуктивність L, та ємність С 
(рис. 2.3). 

Тут U0 – амплітуда напруги на кінцях ділянки кола; 

LX L = 2 ; 
C

X C


=
2

1
; ( )22

CL XXRZ −+=  – 

формули індуктивного XL, ємнісного XC і повного Z опорів. 
Знаючи повний опір Z кола, можна обчислити амплітуду сили 

струму: 
Z

U
I 0

0 = . 

Оскільки повне аналітичне дослідження функції I0= I0(v) засоба-
ми диференціального числення вимагає часу, то, як правило, на уро-

ках фізики його не виконують, а обмежуються якісними оцінками. 

Ми ж виконаємо таке дослідження в електронних таблицях за алго-
ритмом, майже таким самим, як попередній, з подальшою графічною 

інтерпретацією результатів. Відмінність полягає в тому, що зміню-

ється вміст ключових комірок нової таблиці: 
комірка формула 

A2 =$G$6 
A3 =A2+$G$7 
В2 =2*3,14*A2*$G$4 
С2 =1/(2*3,14* A2*$G$5) 
D2 =($G$3^2+(B2-C2)^2)^0,5 
E2 =$G$2/D2*1000 

Уміст комірок В2, С2, D2, Е2 слід копіювати у ті самі стовпці 
третього рядка (на цей момент комірка А3 вже заповнена). Далі всі 

формули третього рядка копіювати в наступні 10 рядків (у даному 

~~ U 

L C R 

Figure 3: Diagram of the investigated alternating current circuit.

Here 𝑈0 is the voltage amplitude across the circuit section terminals;
𝑋𝐿 = 2𝜋𝜈𝐿; 𝑋𝐶 = 1

2𝜋𝜈𝐶 ; 𝑍 =
√︀
𝑅2 + (𝑋𝐿 −𝑋𝐶)2 – formulas for inductive 𝑋𝐿, capaci-

tive 𝑋𝐶 , and total 𝑍 impedances.
Knowing the total impedance 𝑍 of the circuit, one can calculate the current ampli-

tude: 𝐼0 =
𝑈0
𝑍 .

Since complete analytical investigation of the function 𝐼0 = 𝐼0(𝜈) using differential
calculus requires time, it is typically not performed in physics lessons, being limited
to qualitative estimates. We will perform such an investigation in spreadsheets
using an algorithm almost identical to the previous one, with subsequent graphical
interpretation of results. The difference lies in the content of the key cells of the new
table:

Cell Formula
A2 =$G$6
A3 =A2+$G$7
B2 =2*3.14*A2*$G$4
C2 =1/(2*3.14*A2*$G$5)
D2 =($G$3ˆ2+(B2-C2)ˆ2)ˆ0.5
E2 =$G$2/D2*1000

The content of cells B2, C2, D2, E2 should be copied to the same columns of the
third row (at this point cell A3 is already filled). Then all formulas from the third row
should be copied to the next 10 rows (in this case quite sufficient).

Using data from columns A, B, C, D, E, construct graphs of the dependencies of
variables 𝑋𝐿, 𝑋𝐶, 𝑍, 𝐼0 on the frequency 𝜈 of alternating current in one coordinate
plane, as shown in figure 4b.

The graph of function 𝐼0 = 𝐼0(𝜈) in physics is called a resonance curve.

1. To simultaneously display all four graphs 𝑋𝐿 = 𝑋𝐿(𝜈), 𝑋𝐶 = 𝑋𝐶(𝜈), 𝑍 = 𝑍(𝜈),
and 𝐼0 = 𝐼0(𝜈), select all filled cells in columns A, B, C, D, E.
Note. If you want the legend to show the variable name next to the corresponding
graph marker, selection should begin from row 1 (together with column names).
If you select only the numerical part of the table, starting from the second row,
then in the legend next to each marker instead of column names, inscriptions
Series 1, Series 2, etc. will appear.

2. The graphs show that with the given circuit parameters and forced oscillation
frequency 𝜈 ≈ 50 Hz, we have:
a) 𝑋𝐿 = 𝑋𝐶 ; b) 𝑍 = 𝑍min; c) 𝐼 = 𝐼max.

3. By changing in turn the values of active resistance 𝑅 (cell G3), inductance 𝐿 (cell
G4), and capacitance 𝐶 (cell G5), investigate their influence on the appearance of
each curve, including the resonance curve.
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A B C D E F G
1 𝜈, Hz 𝑋𝐿, Ω 𝑋𝐶 , Ω 𝑍, Ω 𝐼0, mA Given:
2 25 118 455 337 44 𝑈0, V = 15
3 30 141 379 238 63 𝑅, Ω = 10
4 35 165 325 160 93 𝐿, H = 0.75
5 40 188 284 96 155 𝐶, F = 1.4E-05
6 45 212 253 42 357 𝜈0, Hz = 25
7 50 236 227 13 1170 Δ𝜈, Hz = 5
... ... ... ... ... ...

(a)v XL, Ω XC, Ω Z, Ω I0, mA Given:
25.00 117.75 454.96 337.36 44.46 15
30.00 141.30 379.13 238.04 63.01 10
35.00 164.85 324.97 160.43 93.50 0.75
40.00 188.40 284.35 96.47 155.49 1.40E-05
45.00 211.95 252.76 42.01 357.04 25
50.00 235.50 227.48 12.82 1170.13 5
55.00 259.05 206.80 53.20 281.96
60.00 282.60 189.57 93.57 160.31
65.00 306.15 174.98 131.55 114.03
70.00 329.70 162.49 167.51 89.55
75.00 353.25 151.65 201.84 74.31
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(b)

Figure 4: Construction of resonance curve: (a) table data; (b) graphs of 𝑋𝐿 = 2𝜋𝜈𝐿; 𝑋𝐶 = 1
2𝜋𝜈𝐶 ;

𝑍 =
√︀

𝑅2 + (𝑋𝐿 −𝑋𝐶)2; 𝐼0 = 𝑈0

𝑍 .

2.2.3. Conclusions
1. From the considered examples, it is evident that mathematical modelling involv-

ing a computer – computer modelling – opens great possibilities for graphical
interpretation (representation) of complex analytical dependencies.

2. In the two problems, examples of adequate use of the computer were demonstrated
when studying natural sciences, and in particular, physics. It is precisely due
to this circumstance that work time is saved through automation of routine
computational operations.

3. Computational experiment with a mathematical model makes it possible to
significantly simplify the problem-solving procedure.

2.3. Checking the model for adequacy
The constructed model should be subjected to validity testing, that is, to establish

how correctly its results reproduce the behaviour of the object in the investigated
situations, that is, whether the correspondence of modelling results to the behaviour
of the real original object is sufficiently complete. This is a peculiar “moment of truth”
for the model. In this situation, we speak about checking the model for adequacy. A
necessary sign of model adequacy is, first of all, satisfactory agreement of modelling
results with known and/or sufficiently reliable observation results or field experiment
data.
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To check the model for adequacy, computational experiment is often directed at
confirming obvious and previously known properties of the object. Such a procedure
is called model testing. As for those cases where there is no possibility of comparing
results obtained on the model with the behaviour of the object itself, testing is
conducted using results provided by theory and corresponding calculations.

A model that has passed testing can be considered, if not satisfactory, then at least
plausible.

Question. Is it possible to devise tests for all possible situations? What follows from
this?

2.4. Computer modelling and its features
For qualitative understanding of the following text, we should clarify a number of

facts that illuminate the specific features of computer modelling: those that depend on
computers (the necessity of discretisation of continuous processes, errors in computer
calculations), and those determined by work methods (initial concepts of numerical
methods).

Almost everything discussed above could generally be done without computers.
With the advent of computers, modelling possibilities rose to an incomparably higher
level. As already noted, thanks to computers’ ability to work with large volumes of
information, and, equally importantly, the enormous (compared to other means) speed
of data processing, computers have become the main working tool in modelling.

2.4.1. Features dependent on computers
From natural sciences, it is known that processes in nature can have a contin-

uous (in space and time) character or an intermittent, jump-like character. This
intermittency has a special name – discreteness.

A clear example in this regard is provided by mathematics. Thus, the set of all real
numbers, when represented on the number line, is a continuous sequence of points,
whilst the set of integers in this case forms a discrete sequence.

Another example can be taken from physics. To regulate current strength in an
electrical circuit, rheostats are used, which usually come in two types: sliding and
stepped. In sliding rheostats, resistance changes smoothly, continuously; in stepped
ones – in jumps, intermittently. Depending on the design of the chosen rheostat,
current strength in the circuit will change continuously, smoothly in the first case,
and discretely in the second.

A digital computer, by its principle of operation, is a discrete device: information
processing in it occurs intermittently, discretely under the control of so-called clock
pulses, which ensures the possibility of implementing the required sequence of opera-
tions. Incidentally, the frequency of these pulses determines the speed of performing
computational operations or, as they say, the computer’s performance. Since both
computer memory has finite volume and the number of operations per unit time is
finite, mathematical models subject to computer processing must also be discrete and
finite.

Question. Can one strictly assert that the resistance of a sliding rheostat changes
smoothly?

Discretisation of continuous processes. When we want to explain something
new, it is sometimes useful to use an analogy with something familiar. Then, even if
complete understanding does not appear, at least an illusion of understanding arises.
As such an analogy for the method of discretising a continuous process, we will use
television filming.

Imagine that using a video camera, the process of a shiny metal ball falling against
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the background of a measuring tape (scale) has been recorded. Such a recording can
be viewed frame by frame, replacing one frame with the next in turn.

Question. Can such a sequence of frames be considered an information model of
the ball falling process?

If the recording is played in normal viewing mode, the monitor will show the falling
process with sufficient smoothness (continuity) for the viewer. However, if we examine
individual consecutive frames, it is easy to see that they contain no continuous process.
In one frame, the ball is opposite one scale division, in the next – opposite another, and
between these frames there is nothing. The smooth process of the ball falling proves to
be replaced by a sequence of its individual states. Such a transition is discretisation
of a continuous process.

Discretisation is the replacement of a continuous process by a sequence of its individual
states.

As in the example with video recording, when discretising continuous processes,
individual states are fixed with some time step. If, for example, the time step equals
0.04 s, this corresponds to a frequency of 1/0.04 = 25 frames per second, and then
two adjacent frames are two process states separated from each other in time by
0.04 s.

Moving now from analogy directly to modelling, we note:

1. We are not going to “film” the continuous falling process at all, since we have no
real process. On the contrary, we are going to model this process on a computer.

2. It is impossible to model continuous processes on a computer, but it is possible
to calculate a sequence of individual object states with some time step. In this
case, we can include any information of interest to us in the object’s “state”:
distance from the ground, coordinate, velocity, acceleration, etc., or all of them
together. Consecutive object states in this case are consecutive values of this set
of quantities (parameters).

Errors in computer calculations. Let us note one more fundamental fact. Comput-
ers do not operate with real numbers of infinite precision; they work with numbers
having some fixed set of digits. The number of digits in such a set is determined by
hardware and software (instrumental means). Arithmetic operations performed with
real numbers often lead to a specific error called rounding error. If, for example, our
computer operated with real numbers containing only one decimal place, then the
result of multiplying 2.1 by 3.2 would be 6.7 and not 6.72. The reasons for the origin
of rounding errors allow us to understand, firstly, their inevitability, and secondly, the
negative fact that they accumulate as the volume of calculations increases. To reduce
these errors at least to some extent, one tries to use ready-made algorithms or develop
one’s own in which these errors do not accumulate noticeably.

Numerical methods. In mathematics, situations are well known where an equation
has been composed, but there are no known methods for its exact analytical solution
(that is, obtaining a solution in the form of an exact formula). It is not much simpler
in those cases where the method of analytical solution is known, but it proves so
cumbersome and costly in terms of time duration and some other computer resources
that solving by this method proves ineffective. Moreover, high accuracy is far from
always necessary. Therefore, mathematicians persistently work on developing so-called
numerical methods for solving equations. These methods comprise the content of a
separate and very important branch of mathematics called computational mathematics,
which provides results with any predetermined accuracy.

Since computer modelling is nowadays a very widespread type of research activity,
to satisfy the growing needs of users, software packages designed for working with
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mathematical models have already been created and continue to be created – so-called
specialised environments for computer modelling.

Summary
1. Modelling problems arise from practice, but at the moment of appearance they

are not clearly formulated. Therefore, before creating a model, the process of
problem formulation must always occur.

2. Creation of a mathematical model always begins with idealisation of the object
based on simplifying assumptions. However, for the purpose of deeper study of
the object, new factors (parameters) are introduced into the previous simplified
version of its model from among those previously neglected but now considered
essential.

3. If a computer may not be directly used in the process of creating a model, it
will still become the final link in working with the model. Therefore, one should
consider its discrete principle of operation, as well as the inevitability of rounding
errors.

4. The central place in modelling is occupied by computational experiment, the
purpose of which is to investigate model behaviour as a result of changing input
data.

5. Since there is almost never complete confidence that the constructed model
correctly reflects the phenomenon (process) it describes, checking the model for
adequacy is always necessary.

6. The final stage in modelling is analysis of results and formulation of conclusions.
One should remember that these conclusions are valid only within the accepted
assumptions, and extending them beyond these limits is undesirable. If some-
times such a step is taken, in order to “look” into the past or future, this should
be done extremely carefully, so as not to attribute to the object properties of a false
model.

7. For further work with the model (its investigation by means of computational
experiment), one must choose a modelling environment for each specific problem.

The simplest environment suitable for beginners is spreadsheets, which is our
choice.
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