Managing energy consumption in FPGA-based edge computing systems with soft-core CPUs

Main Article Content

Oleksandr Hryshchuk
https://orcid.org/0009-0007-9926-4231
Sergiy Zagorodnyuk
https://orcid.org/0000-0003-3415-7746

Abstract

Edge computing, characterized by processing data closer to its source, has emerged as a promising paradigm to address the challenges of latency, bandwidth, and privacy in the Internet of Things (IoT) era. At the same time, Field-Programmable
Gate Arrays (FPGAs) have gained significant attention in edge computing due to their ability to reconfigure design, low power consumption, and high performance. However, the energy consumption of FPGA-based edge computing systems remains a critical concern, particularly in resource-constrained environments where power efficiency is crucial. This paper presents an energy-efficient edge computing system focusing on job scheduling and power management optimization. We review existing techniques and methodologies for optimizing energy consumption in computing systems, including FPGA-based edge devices, identify key challenges and opportunities for future enhancement and propose a flexible, low-power system design with soft-core CPUs.

Abstract views: 442 / PDF downloads: 502

Downloads

Download data is not yet available.

Article Details

How to Cite
Hryshchuk, O. and Zagorodnyuk, S., 2025. Managing energy consumption in FPGA-based edge computing systems with soft-core CPUs. Journal of Edge Computing [Online], 4(1), pp.57–72. Available from: https://doi.org/10.55056/jec.717 [Accessed 28 October 2025].
Section
Articles

How to Cite

Hryshchuk, O. and Zagorodnyuk, S., 2025. Managing energy consumption in FPGA-based edge computing systems with soft-core CPUs. Journal of Edge Computing [Online], 4(1), pp.57–72. Available from: https://doi.org/10.55056/jec.717 [Accessed 28 October 2025].
Received 2024-03-25
Accepted 2025-02-27
Published 2025-05-21

References

Aishwarya, G., Patil, B., Joshi, P.V., Sudarsham, K.M., Vaidyanathan, K., Parandkar, P. and Dsouza, A., 2022. A Survey on use of FPGA in Automotive System. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). pp.51–56. Available from: https://doi.org/10.1109/DISCOVER55800.2022.9974941. DOI: https://doi.org/10.1109/DISCOVER55800.2022.9974941

Alcaraz, S.R., Laso, R., Lorenzo, O.G., Vilariño, D.L., Pena, T.F. and Rivera, F.F., 2024. Assessing Intel OneAPI capabilities and cloud-performance for heterogeneous computing. The Journal of Supercomputing, 80(9), p.13295–13316. Available from: https://doi.org/10.1007/s11227-024-05958-5. DOI: https://doi.org/10.1007/s11227-024-05958-5

Andrae, A.S.G. and Edler, T., 2015. On global electricity usage of communication technology: Trends to 2030. Challenges, 6(1), pp.117–157. Available from: https://doi.org/10.3390/challe6010117. DOI: https://doi.org/10.3390/challe6010117

ATtiny85, 2024. Available from: https://www.microchip.com/en-us/product/attiny85.

Chang, J., Gabow, H.N. and Khuller, S., 2012. A Model for Minimizing Active Processor Time. In: L. Epstein and P. Ferragina, eds. Algorithms – ESA 2012. Springer, Lecture Notes in Computer Science, vol. 7501, pp.289–300. Available from: https://doi.org/10.1007/978-3-642-33090-2_26. DOI: https://doi.org/10.1007/978-3-642-33090-2_26

Dias, L.A., Ferreira, J.C. and Fernandes, M.A.C., 2020. Parallel Implementation of K-Means Algorithm on FPGA. IEEE Access, 8, pp.41071–41084. Available from: https://doi.org/10.1109/ACCESS.2020.2976900. DOI: https://doi.org/10.1109/ACCESS.2020.2976900

Favaro, F., Dufrechou, E., Ezzatti, P. and Oliver, J.P., 2021. Energy-Efficient Algebra Kernels in FPGA for High Performance Computing. Journal of Computer Science and Technology, 21(2), pp.80–92. Available from: https://doi.org/10.24215/16666038.21.e09. DOI: https://doi.org/10.24215/16666038.21.e09

Fernández, A. Cocaña, Ranilla, J. and Sánchez, L., 2015. Energy-efficient allocation of computing node slots in HPC clusters through parameter learning and hybrid genetic fuzzy system modeling. Journal of Supercomputing, 71(3), pp.1163–1174. Available from: https://doi.org/10.1007/s11227-014-1320-9. DOI: https://doi.org/10.1007/s11227-014-1320-9

Garcia, A.D.G., Perez, L.F.G. and Acuna, R.F., 2005. Power consumption management on FPGA. 15th International Conference on Electronics, Communications and Computers (CONIELECOMP’05). pp.240–245. Available from: https://doi.org/10.1109/CONIEL.2005.60. DOI: https://doi.org/10.1109/CONIEL.2005.60

Goel, A., Goel, A.K. and Kumar, A., 2023. Performance analysis of multiple input single layer neural network hardware chip. Multimedia Tools and Applications, 82(18), pp.28213–28234. Available from: https://doi.org/10.1007/s11042-023-14627-3. DOI: https://doi.org/10.1007/s11042-023-14627-3

Haj-Yahya, J., Mendelson, A., Asher, Y.B. and Chattopadhyay, A., 2018. Energy Efficient High Performance Processors: Recent Approaches for Designing Green High Performance Computing. Springer. Available from: https://doi.org/10.1007/978-981-10-8554-3. DOI: https://doi.org/10.1007/978-981-10-8554-3_3

Holguer, A., 2024. W5100 Qsys Component. Available from: https://www.fpgalover.com/index.php/component/content/article/30-cores/39-wiznet-5100-core?Itemid=101.

Ibro, M. and Marinova, G., 2020. DVFS Technique on a Zynq SoC-based System for Low Power Consumption. 2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). pp.1–5. Available from: https://doi.org/10.1109/CoBCom49975.2020.9174061. DOI: https://doi.org/10.1109/CoBCom49975.2020.9174061

Ibro, M. and Marinova, G., 2021. Review on Low-Power Consumption Techniques for FPGA-based designs in IoT technology. 2021 16th International Conference on Telecommunications (ConTEL). pp.110–114. Available from: https://doi.org/10.23919/ConTEL52528.2021.9495970. DOI: https://doi.org/10.23919/ConTEL52528.2021.9495970

Intel® Quartus® Prime Standard Edition User Guide, 2018. Intel. Available from: https://www.intel.com/content/www/us/en/docs/programmable/683230/18-1/user-guides.html.

Jones, N., 2018. How to stop data centres from gobbling up the world’s electricity. Nature, 561, pp.163–166. Available from: https://doi.org/10.1038/d41586-018-06610-y. DOI: https://doi.org/10.1038/d41586-018-06610-y

Kocot, B., Czarnul, P. and Proficz, J., 2023. Energy-Aware Scheduling for High-Performance Computing Systems: A Survey. Energies, 16(2), p.890. Available from: https://doi.org/10.3390/en16020890. DOI: https://doi.org/10.3390/en16020890

Labrosse, J., 2002. MicroC/OS-II: The Real Time Kernel. CRC Press. DOI: https://doi.org/10.1201/9781482295603

Lea, P., 2020. IoT and Edge Computing for Architects. 2nd ed. Packt Publishing Ltd. Available from: https://books.google.com.ua/books?id=bZJ8zQEACAAJ.

Liu, C.L. and Layland, J.W., 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. Journal of the ACM, 20(1), p.46–61. Available from: https://doi.org/10.1145/321738.321743. DOI: https://doi.org/10.1145/321738.321743

Min-Allah, N., Hussain, H., Khan, S.U. and Zomaya, A.Y., 2012. Power efficient rate monotonic scheduling for multi-core systems. Journal of Parallel and Distributed Computing, 72(1), pp.48–57. Available from: https://doi.org/10.1016/j.jpdc.2011.07.005. DOI: https://doi.org/10.1016/j.jpdc.2011.07.005

Minhas, U.I., Woods, R., Nikolopoulos, D.S. and Karakonstantis, G., 2022. Efficient, Dynamic Multi-Task Execution on FPGA-Based Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 33(3), pp.710–722. Available from: https://doi.org/10.1109/TPDS.2021.3101153. DOI: https://doi.org/10.1109/TPDS.2021.3101153

Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J. and Jones, P.H., 2019. Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision Kernels. 2019 IEEE International Conference on Embedded Software and Systems (ICESS). pp.1–8. Available from: https://doi.org/10.1109/ICESS.2019.8782524. DOI: https://doi.org/10.1109/ICESS.2019.8782524

Raca, V., Umboh, S.W., Mehofer, E. and Scholz, B., 2022. Runtime and energy constrained work scheduling for heterogeneous systems. Journal of Supercomputing, 78(15), pp.17150–17177. Available from: https://doi.org/10.1007/s11227-022-04556-7. DOI: https://doi.org/10.1007/s11227-022-04556-7

Safari, M. and Khorsand, R., 2018. Energy-aware scheduling algorithm for timeconstrained workflow tasks in DVFS-enabled cloud environment. Simulation Modelling Practice and Theory, 87, pp.311–326. Available from: https://doi.org/10.1016/j.simpat.2018.07.006. DOI: https://doi.org/10.1016/j.simpat.2018.07.006

Saha, S. and Purohit, M., 2021. NP-completeness of the Active Time Scheduling Problem. 2112.03255[cs], Available from: http://arxiv.org/abs/2112.03255.

Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N. and Hackenberg, D., 2015. Node variability in large-scale power measurements: perspectives from the Green500, Top500 and EEHPCWG. SC ’15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. pp.1–11. Available from: https://doi.org/10.1145/2807591.2807653. DOI: https://doi.org/10.1145/2807591.2807653

Senn, L., Senn, E. and Samoyeau, C., 2012. Modelling the Power and Energy Consumption of NIOS II Softcores on FPGA. 2012 IEEE International Conference on Cluster Computing Workshops. pp.179–183. Available from: https://doi.org/10.1109/ClusterW.2012.41. DOI: https://doi.org/10.1109/ClusterW.2012.41

The Khronos Group, 2013. OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems. Available from: https://www.khronos.org/opencl/.

Vipin, K. and Fahmy, S.A., 2018. FPGA Dynamic and Partial Reconfiguration: A Survey of Architectures, Methods, and Applications. ACM Computing Surveys, 51(4), p.72. Available from: https://doi.org/10.1145/3193827. DOI: https://doi.org/10.1145/3193827

Xu, C., Jiang, S., Luo, G., Sun, G., An, N., Huang, G. and Liu, X., 2022. The Case for FPGA-Based Edge Computing. IEEE Transactions on Mobile Computing, 21(7), pp.2610–2619. Available from: https://doi.org/10.1109/TMC.2020.3041781. DOI: https://doi.org/10.1109/TMC.2020.3041781

Young, A.R., Miniskar, N.R., Liu, F., Blokland, W. and Vetter, J.S., 2022. Adrastea: An Efficient FPGA Design Environment for Heterogeneous Scientific Computing and Machine Learning. In: K. Doug, G. Al, S. Pophale, H. Liu and S. Parete-Koon, eds. Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation. Cham: Springer Nature Switzerland, Communications in Computer and Information Science, vol. 1690, pp.227–243. Available from: https://doi.org/10.1007/978-3-031-23606-8_14. DOI: https://doi.org/10.1007/978-3-031-23606-8_14