A comprehensive systematic review of intrusion detection systems: emerging techniques, challenges, and future research directions

Main Article Content

Arjun Kumar Bose Arnob
https://orcid.org/0009-0003-2244-2328
Rajarshi Roy Chowdhury
https://orcid.org/0000-0001-9235-3687
Nusrat Alam Chaiti
https://orcid.org/0009-0006-2505-7478
Sudipta Saha
https://orcid.org/0009-0007-7617-9034
Ajoy Roy
https://orcid.org/0009-0007-9291-1408

Abstract

The role of Intrusion Detection Systems (IDS) in the protection against the increasing variety of cybersecurity threats in complex environments, including the Internet of Things (IoT), cloud computing, and industrial networks. This study evaluates the existing state-of-the-art IDS methodologies using Deep Learning (DL) approaches, and advanced feature engineering techniques. This research also highlights the success of models such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Explainable AI (XAI) in improving detection accuracy as well as computational efficiency and interoperability. Blockchain and quantum computing technologies are explored to improve data privacy, resilience, and scalability in decentralized and resource-constrained environments. This work primarily identifies key challenges, including real-time anomaly detection, adversarial robustness, and imbalance datasets, to assist researchers in investigating further research opportunities. Focusing on future research in filling these gaps, proceeds toward developing lightweight, adaptive, and ethical IDS frameworks that can operate in real-time across dynamic and heterogeneous environments. In this paper, existing IDS approaches, research opportunities, and advanced cybersecurity strategies are critically synthesized to create a useful resource for academics, researchers, and industry practitioners.

Abstract views: 246 / PDF downloads: 101

Downloads

Download data is not yet available.

Article Details

How to Cite
Arnob, A.K.B., Rajarshi Roy Chowdhury, Nusrat Alam Chaiti, Sudipta Saha and Ajoy Roy, 2025. A comprehensive systematic review of intrusion detection systems: emerging techniques, challenges, and future research directions. Journal of Edge Computing [Online]. Available from: https://doi.org/10.55056/jec.885 [Accessed 16 May 2025].
Section
Articles

How to Cite

Arnob, A.K.B., Rajarshi Roy Chowdhury, Nusrat Alam Chaiti, Sudipta Saha and Ajoy Roy, 2025. A comprehensive systematic review of intrusion detection systems: emerging techniques, challenges, and future research directions. Journal of Edge Computing [Online]. Available from: https://doi.org/10.55056/jec.885 [Accessed 16 May 2025].
Received 2025-01-23
Accepted 2025-04-07
Published 2025-04-15

References

Ahmad, R., Alsmadi, I., Alhamdani, W. and Tawalbeh, L., 2022. A comprehensive deep learning benchmark for IoT IDS. Computers & Security, 114(C), p.102588. Available from: https://doi.org/10.1016/j.cose.2021.102588. DOI: https://doi.org/10.1016/j.cose.2021.102588

Ahmad, R., Alsmadi, I., Alhamdani, W. and Tawalbeh, L., 2023. Zero-day attack detection: a systematic literature review. Artificial Intelligence Review, 56(10), pp.10733–10811. Available from: https://doi.org/10.1007/s10462-023-10437-z. DOI: https://doi.org/10.1007/s10462-023-10437-z

Ahmed, U., Jiangbin, Z., Almogren, A., Sadiq, M., Rehman, A.U., Sadiq, M.T. and Choi, J., 2024. Hybrid bagging and boosting with SHAP based feature selection for enhanced predictive modeling in intrusion detection systems. Scientific Reports, 14(1), p.30532. Available from: https://doi.org/10.1038/s41598-024-81151-1. DOI: https://doi.org/10.1038/s41598-024-81151-1

Al-E’mari, S., Anbar, M., Sanjalawe, Y., Manickam, S. and Hasbullah, I., 2021. Intrusion Detection Systems Using Blockchain Technology: A Review, Issues and Challenges. Computer Systems Science and Engineering, 40(1), pp.87–112. Available from: https://doi.org/10.32604/csse.2022.017941. DOI: https://doi.org/10.32604/csse.2022.017941

AL-Husseini, H., Hosseini, M.M., Yousofi, A. and Alazzawi, M.A., 2024. Whale Optimization Algorithm-Enhanced Long Short-Term Memory Classifier with Novel Wrapped Feature Selection for Intrusion Detection. Journal of Sensor and Actuator Networks, 13(6), p.73. Available from: https://doi.org/10.3390/jsan13060073. DOI: https://doi.org/10.3390/jsan13060073

Alazab, M., Khurma, R.A., Awajan, A. and Camacho, D., 2022. A new intrusion detection system based on Moth–Flame Optimizer algorithm. Expert Systems with Applications, 210(C), p.118439. Available from: https://doi.org/10.1016/j.eswa.2022.118439. DOI: https://doi.org/10.1016/j.eswa.2022.118439

Alghamdi, R. and Bellaiche, M., 2022. Evaluation and Selection Models for Ensemble Intrusion Detection Systems in IoT. IoT, 3(2), pp.285–314. Available from: https://doi.org/10.3390/iot3020017. DOI: https://doi.org/10.3390/iot3020017

Alghamdi, R. and Bellaiche, M., 2023. A cascaded federated deep learning based framework for detecting wormhole attacks in IoT networks. Computers & Security, 125(C), p.103014. Available from: https://doi.org/10.1016/j.cose.2022.103014. DOI: https://doi.org/10.1016/j.cose.2022.103014

Ali, W.A., Sandhya, P., Roccotelli, M. and Fanti, M.P., 2022. A Comparative Study of Current Dataset Used to Evaluate Intrusion Detection System. International Journal on Engineering Applications (IREA), 10(5), pp.336–344. Available from: https://doi.org/10.15866/irea.v10i5.21030. DOI: https://doi.org/10.15866/irea.v10i5.21030

Allahrakha, N., 2023. Balancing Cyber-security and Privacy: Legal and Ethical Considerations in the Digital Age. Legal Issues in the Digital Age, 4(2), pp.78–121. Available from: https://doi.org/10.17323/10.17323/2713-2749.2023.2.78.121. DOI: https://doi.org/10.17323/10.17323/2713-2749.2023.2.78.121

Alrumaih, T.N., Alenazi, M.J., AlSowaygh, N.A., Humayed, A.A. and Alablani, I.A., 2023. Cyber resilience in industrial networks: A state of the art, challenges, and future directions. Journal of King Saud University – Computer and Information Sciences, 35(9), p.101781. Available from: https://doi.org/10.1016/j.jksuci.2023.101781. DOI: https://doi.org/10.1016/j.jksuci.2023.101781

Alsaffar, A.M., Nouri-Baygi, M. and Zolbanin, H.M., 2024. Shielding networks: Enhancing intrusion detection with hybrid feature selection and stack ensemble learning. Journal of Big Data, 11(1), p.133. Available from: https://doi.org/10.1186/s40537-024-00994-7. DOI: https://doi.org/10.1186/s40537-024-00994-7

Alsharif, N.A., Mishra, S. and Alshehri, M., 2023. IDS in IoT using Machine Learning and Blockchain. Engineering, Technology & Applied Science Research, 13(4), pp.11197–11203. Available from: https://doi.org/10.48084/etasr.5992. DOI: https://doi.org/10.48084/etasr.5992

Alzaabi, F.R. and Mehmood, A., 2024. A Review of Recent Advances, Challenges, and Opportunities in Malicious Insider Threat Detection Using Machine Learning Methods. IEEE Access, 12, pp.30907–30927. Available from: https://doi.org/10.1109/ACCESS.2024.3369906. DOI: https://doi.org/10.1109/ACCESS.2024.3369906

Aminu, M., Akinsanya, A., Oyedokun, O. and Dako, D.A., 2024. Enhancing Cyber Threat Detection through Real-Time Threat Intelligence and Adaptive Defense Mechanisms. International Journal of Computer Applications Technology and Research (IJCATR), 13(8), pp.11–27. Available from: https://doi.org/10.7753/IJCATR1308.1002. DOI: https://doi.org/10.7753/IJCATR1308.1002

Arnob, A.K.B. and Jony, A.I., 2024. Enhancing IoT Security: A Deep Learning Approach with Feedforward Neural Network for Detecting Cyber Attacks in IoT. Malaysian Journal of Science and Advanced Technology, 4(4), pp.413–420. Available from: https://doi.org/10.56532/mjsat.v4i4.299. DOI: https://doi.org/10.56532/mjsat.v4i4.299

Arnob, A.K.B., Mridha, M.F., Safran, M., Amiruzzaman, M. and Islam, M.R., 2025. An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data. International Journal of Computational Intelligence Systems, 18(1), p.19. Available from: https://doi.org/10.1007/s44196-025-00741-7. DOI: https://doi.org/10.1007/s44196-025-00741-7

Arreche, O., Guntur, T. and Abdallah, M., 2024. XAI-IDS: Toward Proposing an Explainable Artificial Intelligence Framework for Enhancing Network Intrusion Detection Systems. Applied Sciences, 14(10), p.4170. Available from: https://doi.org/10.3390/app14104170. DOI: https://doi.org/10.3390/app14104170

Bakır, H. and Ceviz, Ö., 2024. Empirical Enhancement of Intrusion Detection Systems: A Comprehensive Approach with Genetic Algorithm-based Hyperparameter Tuning and Hybrid Feature Selection. Arabian Journal for Science and Engineering, 49(9), pp.13025–13043. Available from: https://doi.org/10.1007/s13369-024-08949-z. DOI: https://doi.org/10.1007/s13369-024-08949-z

Barnard, P., Marchetti, N. and DaSilva, L.A., 2022. Robust Network Intrusion Detection Through Explainable Artificial Intelligence (XAI). IEEE Networking Letters, 4(3), pp.167–171. Available from: https://doi.org/10.1109/LNET.2022.3186589. DOI: https://doi.org/10.1109/LNET.2022.3186589

Bedi, P., Gupta, N. and Jindal, V., 2021. I-SiamIDS: An improved Siam-IDS for handling class imbalance in network-based intrusion detection systems. Applied Intelligence, 51(2), pp.1133–1151. Available from: https://doi.org/10.1007/s10489-020-01886-y. DOI: https://doi.org/10.1007/s10489-020-01886-y

Benslimane, Y. and Benslimane, A., 2024. A Specification Based Ids for Detecting Selective-Forwarding Attack in 6lowpan Network for IoT. IoT-Enabled Energy Efficiency Assessment of Renewable Energy Systems and Micro-grids in Smart Cities. Cham: Springer Nature Switzerland, Lecture Notes in Networks and Systems, vol. 983, pp.22–36. Available from: https://doi.org/10.1007/978-3-031-60632-8_3. DOI: https://doi.org/10.1007/978-3-031-60632-8_3

Berbiche, N. and El Alami, J., 2023. Enhancing Anomaly-Based Intrusion Detection Systems: A Hybrid Approach Integrating Feature Selection and Bayesian Hyperparameter Optimization. Ingénierie des systèmes d information, 28(5), pp.1177–1195. Available from: https://doi.org/10.18280/isi.280506. DOI: https://doi.org/10.18280/isi.280506

Bhosale, K.S., Nenova, M. and Iliev, G., 2021. A study of cyber attacks: In the healthcare sector. 2021 Sixth Junior Conference on Lighting (Lighting). pp.1–6. Available from: https://doi.org/10.1109/Lighting49406.2021.9598947. DOI: https://doi.org/10.1109/Lighting49406.2021.9598947

Bouke, M.A. and Abdullah, A., 2023. An empirical study of pattern leakage impact during data preprocessing on machine learning-based intrusion detection models reliability. Expert Systems with Applications, 230, p.120715. Available from: https://doi.org/10.1016/j.eswa.2023.120715. DOI: https://doi.org/10.1016/j.eswa.2023.120715

Costa, J.C., Roxo, T., Proença, H. and Inácio, P.R.M., 2024. How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses. IEEE Access, 12, pp.61113–61136. Available from: https://doi.org/10.1109/ACCESS.2024.3395118. DOI: https://doi.org/10.1109/ACCESS.2024.3395118

Dhirani, L.L., Mukhtiar, N., Chowdhry, B.S. and Newe, T., 2023. Ethical Dilemmas and Privacy Issues in Emerging Technologies: A Review. Sensors, 23(3), p.1151. Available from: https://doi.org/10.3390/s23031151. DOI: https://doi.org/10.3390/s23031151

Donkol, A.A.E.B., Hafez, A.G., Hussein, A.I. and Mabrook, M.M., 2023. Optimization of Intrusion Detection Using Likely Point PSO and Enhanced LSTM-RNN Hybrid Technique in Communication Networks. IEEE Access, 11, pp.9469–9482. Available from: https://doi.org/10.1109/ACCESS.2023.3240109. DOI: https://doi.org/10.1109/ACCESS.2023.3240109

Duan, G., Lv, H., Wang, H., Feng, G. and Li, X., 2024. Practical Cyber Attack Detection with Continuous Temporal Graph in Dynamic Network System. IEEE Transactions on Information Forensics and Security, 19, pp.4851–4864. Available from: https://doi.org/10.1109/TIFS.2024.3385321. DOI: https://doi.org/10.1109/TIFS.2024.3385321

Duo, W., Zhou, M. and Abusorrah, A., 2022. A Survey of Cyber Attacks on Cyber Physical Systems: Recent Advances and Challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), pp.784–800. Available from: https://doi.org/10.1109/JAS.2022.105548. DOI: https://doi.org/10.1109/JAS.2022.105548

Elsayed, M.S., Le-Khac, N.A. and Jurcut, A.D., 2020. InSDN: A Novel SDN Intrusion Dataset. IEEE Access, 8, pp.165263–165284. Available from: https://doi.org/10.1109/ACCESS.2020.3022633. DOI: https://doi.org/10.1109/ACCESS.2020.3022633

Gouveia, A. and Correia, M., 2020. Towards Quantum-Enhanced Machine Learning for Network Intrusion Detection. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). pp.1–8. Available from: https://doi.org/10.1109/NCA51143.2020.9306691. DOI: https://doi.org/10.1109/NCA51143.2020.9306691

Gramegna, A. and Giudici, P., 2021. SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk. Frontiers in Artificial Intelligence, 4, p.752558. Available from: https://doi.org/10.3389/frai.2021.752558. DOI: https://doi.org/10.3389/frai.2021.752558

Guan, Y., Ren, Y., Sun, Q., Li, S.E., Ma, H., Duan, J., Dai, Y. and Cheng, B., 2023. Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence. IEEE Transactions on Cybernetics, 53(2), pp.859–873. Available from: https://doi.org/10.1109/TCYB.2022.3163816. DOI: https://doi.org/10.1109/TCYB.2022.3163816

Guo, Y., 2023. A review of Machine Learning-based zero-day attack detection: Challenges and future directions. Computer Communications, 198, pp.175–185. Available from: https://doi.org/10.1016/j.comcom.2022.11.001. DOI: https://doi.org/10.1016/j.comcom.2022.11.001

Hajj, S., Azar, J., Bou Abdo, J., Demerjian, J., Guyeux, C., Makhoul, A. and Ginhac, D., 2023. Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems. Sensors, 23(16), p.7038. Available from: https://doi.org/10.3390/s23167038. DOI: https://doi.org/10.3390/s23167038

Halim, Z., Yousaf, M.N., Waqas, M., Sulaiman, M., Abbas, G., Hussain, M., Ahmad, I. and Hanif, M., 2021. An effective genetic algorithm-based feature selection method for intrusion detection systems. Computers & Security, 110, p.102448. Available from: https://doi.org/10.1016/j.cose.2021.102448. DOI: https://doi.org/10.1016/j.cose.2021.102448

Hariharan, S., Rejimol Robinson, R.R., Prasad, R.R., Thomas, C. and Balakrishnan, N., 2023. XAI for intrusion detection system: Comparing explanations based on global and local scope. Journal of Computer Virology and Hacking Techniques, 19, pp.217–239. Available from: https://doi.org/10.1007/s11416-022-00441-2. DOI: https://doi.org/10.1007/s11416-022-00441-2

Haroon, M.S. and Ali, H.M., 2023. Ensemble adversarial training based defense against adversarial attacks for machine learning-based intrusion detection system. Neural Network World, 33(5), pp.317–336. Available from: https://doi.org/10.14311/NNW.2023.33.018. DOI: https://doi.org/10.14311/NNW.2023.33.018

Hashmi, A., Barukab, O.M. and Osman, A.H., 2024. A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm. PLoS ONE, 19(5), p.e0302294. Available from: https://doi.org/10.1371/journal.pone.0302294. DOI: https://doi.org/10.1371/journal.pone.0302294

Haugerud, H., Tran, H.N., Aitsaadi, N. and Yazidi, A., 2021. A dynamic and scalable parallel Network Intrusion Detection System using intelligent rule ordering and Network Function Virtualization. Future Generation Computer Systems, 124, pp.254–267. Available from: https://doi.org/10.1016/j.future.2021.05.037. DOI: https://doi.org/10.1016/j.future.2021.05.037

He, Q., 2021. Smart City Network Security Evaluation System. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). pp.249–252. Available from: https://doi.org/10.1109/ICITBS53129.2021.00070. DOI: https://doi.org/10.1109/ICITBS53129.2021.00070

Hore, S., Ghadermazi, J., Shah, A. and Bastian, N.D., 2024. A sequential deep learning framework for a robust and resilient network intrusion detection system. Computers & Security, 144(C), p.103928. Available from: https://doi.org/10.1016/j.cose.2024.103928. DOI: https://doi.org/10.1016/j.cose.2024.103928

Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z. and Azim, M.A., 2022. Transfer learning: A friendly introduction. Journal of Big Data, 9, p.102. Available from: https://doi.org/10.1186/s40537-022-00652-w. DOI: https://doi.org/10.1186/s40537-022-00652-w

Houda, Z.A.E., Brik, B. and Khoukhi, L., 2022. “Why Should I Trust Your IDS?”: An Explainable Deep Learning Framework for Intrusion Detection Systems in Internet of Things Networks. IEEE Open Journal of the Communications Society, 3, pp.1164–1176. Available from: https://doi.org/10.1109/OJCOMS.2022.3188750. DOI: https://doi.org/10.1109/OJCOMS.2022.3188750

Ilca, L.F., Lucian, O.P. and Balan, T.C., 2023. Enhancing Cyber-Resilience for Small and Medium-Sized Organizations with Prescriptive Malware Analysis, Detection and Response. Sensors, 23(15), p.6757. Available from: https://doi.org/10.3390/s23156757. DOI: https://doi.org/10.3390/s23156757

Kalinin, M. and Krundyshev, V., 2023. Security intrusion detection using quantum machine learning techniques. Journal of Computer Virology and Hacking Techniques, 19, pp.125–136. Available from: https://doi.org/10.1007/s11416-022-00435-0. DOI: https://doi.org/10.1007/s11416-022-00435-0

Kalyanathaya, K.P. and K, K.P., 2024. A novel method for developing explainable machine learning framework using feature neutralization technique. The Scientific Temper, 15(2), pp.2225–2230. Available from: https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.35. DOI: https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.35

Kamaldeep, Malik, M., Dutta, M. and Granjal, J., 2021. IoT-Sentry: A Cross-Layer-Based Intrusion Detection System in Standardized Internet of Things. IEEE Sensors Journal, 21(24), pp.28066–28076. Available from: https://doi.org/10.1109/JSEN.2021.3124886. DOI: https://doi.org/10.1109/JSEN.2021.3124886

Khonde, S.R. and Ulagamuthalvi, V., 2022. Hybrid intrusion detection system using blockchain framework. EURASIP Journal on Wireless Communications and Networking, 2022(1), p.58. Available from: https://doi.org/10.1186/s13638-022-02089-4. DOI: https://doi.org/10.1186/s13638-022-02089-4

Khraisat, A. and Alazab, A., 2021. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity, 4, p.18. Available from: https://doi.org/10.1186/s42400-021-00077-7. DOI: https://doi.org/10.1186/s42400-021-00077-7

Kumar, V. and Sinha, D., 2021. A robust intelligent zero-day cyber-attack detection technique. Complex & Intelligent Systems, 7(5), pp.2211–2234. Available from: https://doi.org/10.1007/s40747-021-00396-9. DOI: https://doi.org/10.1007/s40747-021-00396-9

Kwon, D., 2024. Cyberattacks are hitting research institutions – with devastating effects. Nature, 630(8017), pp.535–536. Available from: https://doi.org/10.1038/d41586-024-01711-3. DOI: https://doi.org/10.1038/d41586-024-01711-3

Kwon, H.Y., Kim, T. and Lee, M.K., 2022. Advanced Intrusion Detection Combining Signature-Based and Behavior-Based Detection Methods. Electronics, 11(6), p.867. Available from: https://doi.org/10.3390/electronics11060867. DOI: https://doi.org/10.3390/electronics11060867

Lame, G., 2019. Systematic Literature Reviews: An Introduction. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), pp.1633–1642. Available from: https://doi.org/10.1017/dsi.2019.169. DOI: https://doi.org/10.1017/dsi.2019.169

Lampe, B. and Meng, W., 2024. Can-train-and-test: A curated CAN dataset for automotive intrusion detection. Computers & Security, 140(C), p.103777. Available from: https://doi.org/10.1016/j.cose.2024.103777. DOI: https://doi.org/10.1016/j.cose.2024.103777

Lee, M.L., Hsu, W. and Kothari, V., 2004. Cleaning the spurious links in data. IEEE Intelligent Systems, 19(2), pp.28–33. Available from: https://doi.org/10.1109/MIS.2004.1274908. DOI: https://doi.org/10.1109/MIS.2004.1274908

Lei, Y., 2024. Smart Network Forensics with Generative Adversarial Networks Leveraging Blockchain for Anomaly Detection and Immutable Audit Trails. Power System Technology, 48(1), pp.1625–1642. Available from: https://doi.org/10.52783/pst.432. DOI: https://doi.org/10.52783/pst.432

Li, Y. and Liu, Q., 2021. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments. Energy Reports, 7, pp.8176–8186. Available from: https://doi.org/10.1016/j.egyr.2021.08.126. DOI: https://doi.org/10.1016/j.egyr.2021.08.126

Liang, J., Zhu, K., Li, Y., Li, Y. and Gong, Y., 2024. Multi-Objective Evolutionary Neural Architecture Search with Weight-Sharing Supernet. Applied Sciences, 14(14), p.6143. Available from: https://doi.org/10.3390/app14146143. DOI: https://doi.org/10.3390/app14146143

Lim, H.K., Kim, J.B., Kim, K., Hong, Y.G. and Han, Y.H., 2019. Payload-Based Traffic Classification Using Multi-Layer LSTM in Software Defined Networks. Applied Sciences, 9(12), p.2550. Available from: https://doi.org/10.3390/app9122550. DOI: https://doi.org/10.3390/app9122550

Liu, Z. and Shi, Y., 2022. A Hybrid IDS Using GA-Based Feature Selection Method and Random Forest. International Journal of Machine Learning and Computing, 12(2), pp.43–50. Available from: https://doi.org/10.18178/ijmlc.2022.12.2.1077. DOI: https://doi.org/10.18178/ijmlc.2022.12.2.1077

Lola, J., Serrão, C. and Casal, J., 2023. Towards Transparent and Secure IoT: Improving the Security and Privacy through a User-Centric Rules-Based System. Electronics, 12(12), p.2589. Available from: https://doi.org/10.3390/electronics12122589. DOI: https://doi.org/10.3390/electronics12122589

Lorè, F., Basile, P., Appice, A., de Gemmis, M., Malerba, D. and Semeraro, G., 2023. An AI framework to support decisions on GDPR compliance. Journal of Intelligent Information Systems, 61(2), pp.541–568. Available from: https://doi.org/10.1007/s10844-023-00782-4. DOI: https://doi.org/10.1007/s10844-023-00782-4

Lu, W. and Xue, L., 2022. A Perceptron Mixture Model of Intrusion Detection for Safeguarding Electronic Health Record System. Advances in Networked-Based Information Systems. NBiS 2021. Cham: Springer International Publishing, Lecture Notes in Networks and Systems, vol. 313, pp.202–212. Available from: https://doi.org/10.1007/978-3-030-84913-9_18. DOI: https://doi.org/10.1007/978-3-030-84913-9_18

Lyu, R., He, M., Zhang, Y., Jin, L. and Wang, X., 2021. Network Intrusion Detection Based on an Efficient Neural Architecture Search. Symmetry, 13(8), p.1453. Available from: https://doi.org/10.3390/sym13081453. DOI: https://doi.org/10.3390/sym13081453

Mansour, R.F., 2022. Blockchain assisted clustering with Intrusion Detection System for Industrial Internet of Things environment. Expert Systems with Applications, 207, p.117995. Available from: https://doi.org/10.1016/j.eswa.2022.117995. DOI: https://doi.org/10.1016/j.eswa.2022.117995

Martins, I., Resende, J.S., Sousa, P.R., Silva, S., Antunes, L. and Gama, J., 2022. Host-based IDS: A review and open issues of an anomaly detection system in IoT. Future Generation Computer Systems, 133, pp.95–113. Available from: https://doi.org/10.1016/j.future.2022.03.001. DOI: https://doi.org/10.1016/j.future.2022.03.001

Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y. and Han, J., 2018. When Intrusion Detection Meets Blockchain Technology: A Review. IEEE Access, 6, pp.10179–10188. Available from: https://doi.org/10.1109/ACCESS.2018.2799854. DOI: https://doi.org/10.1109/ACCESS.2018.2799854

Meszaros, J. and Ho, C.h., 2021. AI research and data protection: Can the same rules apply for commercial and academic research under the GDPR? Computer Law & Security Review, 41, p.105532. Available from: https://doi.org/10.1016/j.clsr.2021.105532. DOI: https://doi.org/10.1016/j.clsr.2021.105532

Mohiuddin, G., Lin, Z., Zheng, J., Wu, J., Li, W., Fang, Y., Wang, S., Chen, J. and Zeng, X., 2023. Intrusion Detection using hybridized Meta-heuristic techniques with Weighted XGBoost Classifier. Expert Systems with Applications, 232, p.120596. Available from: https://doi.org/10.1016/j.eswa.2023.120596. DOI: https://doi.org/10.1016/j.eswa.2023.120596

Moskal, S., Yang, S.J. and Kuhl, M.E., 2018. Extracting and Evaluating Similar and Unique Cyber Attack Strategies from Intrusion Alerts. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). pp.49–54. Available from: https://doi.org/10.1109/ISI.2018.8587402. DOI: https://doi.org/10.1109/ISI.2018.8587402

Muneer, S., Farooq, U., Athar, A., Ahsan Raza, M., Ghazal, T.M. and Sakib, S., 2024. A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection: A Comprehensive Analysis. Journal of Engineering, 2024(1), p.3909173. Available from: https://doi.org/10.1155/2024/3909173. DOI: https://doi.org/10.1155/2024/3909173

Muthuppalaniappan, M. and Stevenson, K., 2021. Healthcare cyber-attacks and the COVID-19 pandemic: An urgent threat to global health. International Journal for Quality in Health Care, 33(1), p.mzaa117. Available from: https://doi.org/10.1093/intqhc/mzaa117. DOI: https://doi.org/10.1093/intqhc/mzaa117

Nallakaruppan, M.K., Somayaji, S.R.K., Fuladi, S., Benedetto, F., Ulaganathan, S.K. and Yenduri, G., 2024. Enhancing Security of Host-Based Intrusion Detection Systems for the Internet of Things. IEEE Access, 12, pp.31788–31797. Available from: https://doi.org/10.1109/ACCESS.2024.3355794. DOI: https://doi.org/10.1109/ACCESS.2024.3355794

Neupane, S., Ables, J., Anderson, W., Mittal, S., Rahimi, S., Banicescu, I. and Seale, M., 2022. Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Opportunities. IEEE Access, 10, pp.112392–112415. Available from: https://doi.org/10.1109/ACCESS.2022.3216617. DOI: https://doi.org/10.1109/ACCESS.2022.3216617

Nguyen, X.H., Nguyen, X.D., Huynh, H.H. and Le, K.H., 2022. Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways. Sensors, 22(2), p.432. Available from: https://doi.org/10.3390/s22020432. DOI: https://doi.org/10.3390/s22020432

Nicesio, O.K., Leal, A.G. and Gava, V.L., 2023. Quantum Machine Learning for Network Intrusion Detection Systems, a Systematic Literature Review. 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC). pp.1–6. Available from: https://doi.org/10.1109/ICAIC57335.2023.10044125. DOI: https://doi.org/10.1109/ICAIC57335.2023.10044125

Nifakos, S., Chandramouli, K., Nikolaou, C.K., Papachristou, P., Koch, S., Panaousis, E. and Bonacina, S., 2021. Influence of Human Factors on Cyber Security within Healthcare Organisations: A Systematic Review. Sensors, 21(15), p.5119. Available from: https://doi.org/10.3390/s21155119. DOI: https://doi.org/10.3390/s21155119

Nilima, S.I., Bhuyan, M.K., Kamruzzaman, M., Akter, J., Hasan, R. and Johora, F.T., 2024. Optimizing Resource Management for IoT Devices in Constrained Environments. Journal of Computer and Communications, 12(8), pp.81–98. Available from: https://doi.org/10.4236/jcc.2024.128005. DOI: https://doi.org/10.4236/jcc.2024.128005

Nwamuo, O., de Faria Quinan, P.M., Traore, I., Woungang, I. and Aldribi, A., 2020. Arguments Against Using the 1998 DARPA Dataset for Cloud IDS Design and Evaluation and Some Alternative. Machine Learning for Networking. MLN 2019. Cham: Springer International Publishing, Lecture notes in computer science, vol. 12081, pp.315–332. Available from: https://doi.org/10.1007/978-3-030-45778-5_21. DOI: https://doi.org/10.1007/978-3-030-45778-5_21

Ofoegbu, K.D.O., Osundare, O.S., Ike, C.S., Fakeyede, O.G. and Ige, A.B., 2024. Proactive cyber threat mitigation: Integrating data-driven insights with user-centric security protocols. Computer Science & IT Research Journal, 5(8), pp.2083–2106. Available from: https://doi.org/10.51594/csitrj.v5i8.1493. DOI: https://doi.org/10.51594/csitrj.v5i8.1493

Omer Albasheer, F., Ramesh Haibatti, R., Agarwal, M. and Yeob Nam, S., 2024. A Novel IDS Based on Jaya Optimizer and Smote-ENN for Cyberattacks Detection. IEEE Access, 12, pp.101506–101527. Available from: https://doi.org/10.1109/ACCESS.2024.3431534. DOI: https://doi.org/10.1109/ACCESS.2024.3431534

Oyeniyi, L.D., Ugochukwu, C.E. and Mhlongo, N.Z., 2024. Developing cybersecurity frameworks for financial institutions: A comprehensive review and best practices. Computer Science & IT Research Journal, 5(4), pp.903–925. Available from: https://doi.org/10.51594/csitrj.v5i4.1049. DOI: https://doi.org/10.51594/csitrj.v5i4.1049

Padmasiri, H., Shashirangana, J., Meedeniya, D., Rana, O. and Perera, C., 2022. Automated License Plate Recognition for Resource-Constrained Environments. Sensors, 22(4), p.1434. Available from: https://doi.org/10.3390/s22041434. DOI: https://doi.org/10.3390/s22041434

Pasikhani, A.M., Clark, J.A., Gope, P. and Alshahrani, A., 2021. Intrusion Detection Systems in RPL-Based 6LoWPAN: A Systematic Literature Review. IEEE Sensors Journal, 21(11), pp.12940–12968. Available from: https://doi.org/10.1109/JSEN.2021.3068240. DOI: https://doi.org/10.1109/JSEN.2021.3068240

Patel, S.K., 2023. Improving intrusion detection in cloud-based healthcare using neural network. Biomedical Signal Processing and Control, 83, p.104680. Available from: https://doi.org/10.1016/j.bspc.2023.104680. DOI: https://doi.org/10.1016/j.bspc.2023.104680

Pathak, M., 2024. Data Governance Redefined: The Evolution of EU Data Regulations from the GDPR to the DMA, DSA, DGA, Data Act and AI Act. European Data Protection Law Review, 10(1), pp.43–56. Available from: https://doi.org/10.21552/edpl/2024/1/8. DOI: https://doi.org/10.21552/edpl/2024/1/8

Patil, S., Varadarajan, V., Mazhar, S.M., Sahibzada, A., Ahmed, N., Sinha, O., Kumar, S., Shaw, K. and Kotecha, K., 2022. Explainable Artificial Intelligence for Intrusion Detection System. Electronics, 11(19), p.3079. Available from: https://doi.org/10.3390/electronics11193079. DOI: https://doi.org/10.3390/electronics11193079

Pu, G., Wang, L., Shen, J. and Dong, F., 2021. A hybrid unsupervised clusteringbased anomaly detection method. Tsinghua Science and Technology, 26(2), pp.146–153. Available from: https://doi.org/10.26599/TST.2019.9010051. DOI: https://doi.org/10.26599/TST.2019.9010051

Rajendran, T., Mohamed Imtiaz, N., Jagadeesh, K. and Sampathkumar, B., 2024. Cybersecurity Threat Detection Using Deep Learning and Anomaly Detection Techniques. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS). vol. 1, pp.1–7. Available from: https://doi.org/10.1109/ICKECS61492.2024.10617347. DOI: https://doi.org/10.1109/ICKECS61492.2024.10617347

Ritterbusch, G.D. and Teichmann, M.R., 2023. Defining the Metaverse: A Systematic Literature Review. IEEE Access, 11, pp.12368–12377. Available from: https://doi.org/10.1109/ACCESS.2023.3241809. DOI: https://doi.org/10.1109/ACCESS.2023.3241809

Rose, J.R., Swann, M., Grammatikakis, K.P., Koufos, I., Bendiab, G., Shiaeles, S. and Kolokotronis, N., 2022. IDERES: Intrusion detection and response system using machine learning and attack graphs. Journal of Systems Architecture, 131(C), p.102722. Available from: https://doi.org/10.1016/j.sysarc.2022.102722. DOI: https://doi.org/10.1016/j.sysarc.2022.102722

Sajid, M., Malik, K.R., Almogren, A., Malik, T.S., Khan, A.H., Tanveer, J. and Rehman, A.U., 2024. Enhancing intrusion detection: A hybrid machine and deep learning approach. Journal of Cloud Computing, 13, p.123. Available from: https://doi.org/10.1186/s13677-024-00685-x. DOI: https://doi.org/10.1186/s13677-024-00685-x

Salih, A.M., Raisi-Estabragh, Z., Galazzo, I.B., Radeva, P., Petersen, S.E., Lekadir, K. and Menegaz, G., 2025. A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME. Advanced Intelligent Systems, 7(1), p.2400304. Available from: https://doi.org/10.1002/aisy.202400304. DOI: https://doi.org/10.1002/aisy.202400304

Sameera, N., Bhanusri, A. and Shashi, M., 2019. Inductive and Transductive Transfer Learning for Zero-day Attack Detection. International Journal of Innovative Technology and Exploring Engineering, 8(11), pp.1765–1768. Available from: https://doi.org/10.35940/ijitee.K1758.0981119. DOI: https://doi.org/10.35940/ijitee.K1758.0981119

Sameera, N. and Shashi, M., 2020. Deep transductive transfer learning framework for zero-day attack detection. ICT Express, 6(4), pp.361–367. Available from: https://doi.org/10.1016/j.icte.2020.03.003. DOI: https://doi.org/10.1016/j.icte.2020.03.003

Sani, M.S., Iranmanesh, S., Salarian, H., Raad, R. and Jamalipour, A., 2024. BIDS: Blockchain-Enabled Intrusion Detection System in Smart Cities. IEEE Internet of Things Magazine, 7(2), pp.107–113. Available from: https://doi.org/10.1109/IOTM.001.2300191. DOI: https://doi.org/10.1109/IOTM.001.2300191

Sharma, S. and Verma, V.K., 2021. Security explorations for routing attacks in low power networks on internet of things. The Journal of Supercomputing, 77, pp.4778–4812. Available from: https://doi.org/10.1007/s11227-020-03471-z. DOI: https://doi.org/10.1007/s11227-020-03471-z

Simoglou, G., Violettas, G., Petridou, S. and Mamatas, L., 2021. Intrusion detection systems for RPL security: A comparative analysis. Computers & Security, 104(C), p.102219. Available from: https://doi.org/10.1016/j.cose.2021.102219. DOI: https://doi.org/10.1016/j.cose.2021.102219

Sivamohan, S. and Sridhar, S.S., 2023. An optimized model for network intrusion detection systems in Industry 4.0 using XAI based Bi-LSTM framework. Neural Computing and Applications, 35(15), pp.11459–11475. Available from: https://doi.org/10.1007/s00521-023-08319-0. DOI: https://doi.org/10.1007/s00521-023-08319-0

Souri, A., Norouzi, M. and Alsenani, Y., 2024. A new cloud-based cyberattack detection architecture for hyper-automation process in industrial internet of things. Cluster Computing, 27(3), pp.3639–3655. Available from: https://doi.org/10.1007/s10586-023-04163-y. DOI: https://doi.org/10.1007/s10586-023-04163-y

Suja Mary, D., Jaya Singh Dhas, L., Deepa, A., Chaurasia, M.A. and Jaspin Jeba Sheela, C., 2024. Network intrusion detection: An optimized deep learning approach using big data analytics. Expert Systems with Applications, 251(C), p.123919. Available from: https://doi.org/10.1016/j.eswa.2024.123919. DOI: https://doi.org/10.1016/j.eswa.2024.123919

Tariq, M.U., 2024. Enhancing Cybersecurity Protocols in Modern Healthcare Systems: Strategies and Best Practices. Transformative Approaches to Patient Literacy and Healthcare Innovation. IGI Global Scientific Publishing, pp.223–241. Available from: https://doi.org/10.4018/979-8-3693-3661-8.ch011. DOI: https://doi.org/10.4018/979-8-3693-3661-8.ch011

Thakkar, A., Kikani, N. and Geddam, R., 2024. Fusion of linear and nonlinear dimensionality reduction techniques for feature reduction in LSTM-based Intrusion Detection System. Applied Soft Computing, 154, p.111378. Available from: https://doi.org/10.1016/j.asoc.2024.111378. DOI: https://doi.org/10.1016/j.asoc.2024.111378

Tran, N., Chen, H., Bhuyan, J. and Ding, J., 2022. Data Curation and Quality Evaluation for Machine Learning-Based Cyber Intrusion Detection. IEEE Access, 10, pp.121900–121923. Available from: https://doi.org/10.1109/ACCESS.2022.3211313. DOI: https://doi.org/10.1109/ACCESS.2022.3211313

Verma, M.E., Bridges, R.A., Iannacone, M.D., Hollifield, S.C., Moriano, P., Hespeler, S.C., Kay, B. and Combs, F.L., 2024. A comprehensive guide to CAN IDS data and introduction of the ROAD dataset. PLOS ONE, 19(1), p.e0296879. Available from: https://doi.org/10.1371/journal.pone.0296879. DOI: https://doi.org/10.1371/journal.pone.0296879

Verma, R.M., Zeng, V. and Faridi, H., 2019. Data Quality for Security Challenges: Case Studies of Phishing, Malware and Intrusion Detection Datasets. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: Association for Computing Machinery, CCS ’19, pp.2605–2607. Available from: https://doi.org/10.1145/3319535.3363267. DOI: https://doi.org/10.1145/3319535.3363267

Walters, R. and Novak, M., 2021. Cyber Security, Artificial Intelligence, Data Protection & the Law. Singapore: Springer. Available from: https://doi.org/10.1007/978-981-16-1665-5. DOI: https://doi.org/10.1007/978-981-16-1665-5

Wang, M. and Liu, Z., 2024. Defense against Adversarial Attacks in Image Recognition Based on Multilayer Filters. Applied Sciences, 14(18), p.8119. Available from: https://doi.org/10.3390/app14188119. DOI: https://doi.org/10.3390/app14188119

Xie, H., Zhang, L., Lim, C.P., Yu, Y. and Liu, H., 2021. Feature Selection Using Enhanced Particle Swarm Optimisation for Classification Models. Sensors, 21(5), p.1816. Available from: https://doi.org/10.3390/s21051816. DOI: https://doi.org/10.3390/s21051816

Xu, D. and Hua, B., 2023. An intrusion detection method combining Bayesian optimization and LightGBM. International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023). SPIE, vol. 12941, pp.917–921. Available from: https://doi.org/10.1117/12.3011542. DOI: https://doi.org/10.1117/12.3011542

Xu, G., Liu, Z. and Loy, C.C., 2023. Computation-Efficient Knowledge Distillation via Uncertainty-Aware Mixup. Pattern Recognition, 138(C), p.109338. Available from: https://doi.org/10.1016/j.patcog.2023.109338. DOI: https://doi.org/10.1016/j.patcog.2023.109338

Yawalkar, P.M., Paithankar, D.N., Pabale, A.R., Kolhe, R.V. and William, P., 2023. Integrated identity and auditing management using blockchain mechanism. Measurement: Sensors, 27, p.100732. Available from: https://doi.org/10.1016/j.measen.2023.100732. DOI: https://doi.org/10.1016/j.measen.2023.100732

Ye, Z., Luo, J., Zhou, W., Wang, M. and He, Q., 2024. An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection. Future Generation Computer Systems, 151(C), pp.124–136. Available from: https://doi.org/10.1016/j.future.2023.09.035. DOI: https://doi.org/10.1016/j.future.2023.09.035

Yılmaz, E.N. and Gönen, S., 2018. Attack detection/prevention system against cyber attack in industrial control systems. Computers & Security, 77, pp.94–105. Available from: https://doi.org/10.1016/j.cose.2018.04.004. DOI: https://doi.org/10.1016/j.cose.2018.04.004

Zarpelão, B.B., Miani, R.S., Kawakani, C.T. and de Alvarenga, S.C., 2017. A survey of intrusion detection in Internet of Things. Journal of Network and Computer Applications, 84(C), pp.25–37. Available from: https://doi.org/10.1016/j.jnca.2017.02.009. DOI: https://doi.org/10.1016/j.jnca.2017.02.009

Zhang, Y., Liu, Y., Zhang, X., Song, Q., Ouyang, A. and Yang, J., 2025. Multiobjective Particle Swarm Optimization with Integrated Fireworks Algorithm and Size Double Archiving. International Journal of Computational Intelligence Systems, 18, p.2. Available from: https://doi.org/10.1007/s44196-024-00722-2. DOI: https://doi.org/10.1007/s44196-024-00722-2

Zhang, Y., Zhang, L. and Zheng, X., 2024. Enhanced Intrusion Detection for ICS Using MS1DCNN and Transformer to Tackle Data Imbalance. Sensors, 24(24), p.7883. Available from: https://doi.org/10.3390/s24247883. DOI: https://doi.org/10.3390/s24247883

Zoppi, T., Ceccarelli, A. and Bondavalli, A., 2021. Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application. IEEE Access, 9, pp.90603–90615. Available from: https://doi.org/10.1109/ACCESS.2021.3090957. DOI: https://doi.org/10.1109/ACCESS.2021.3090957