Comparative and edge-hybrid modeling of EfficientNetV2 and MobileNetV2 for multi-classcrop disease classification with statistical validation

Main Article Content

Thomas Njoroge
https://orcid.org/0009-0000-2147-9848
Rachael Kibuku
https://orcid.org/0000-0002-9590-0882
Kevin Mugoye

Abstract

Crop disease classification is critical for global food security, yet deploying accurate deep learning models on resource-constrained edge devices remains challenging. This study systematically compares EfficientNetV2 and MobileNetV2 while proposing an edge-optimised hybrid architecture integrating both with Vision Transformers (ViT). Evaluated on PlantVillage and field-collected images, MobileNetV2 demonstrated superior edge compatibility with 99.0% accuracy, 0.0938 s/image inference speed, minimal resources (30.38MB size), and statistical superiority (z-test p=0.0071). The hybrid model combines MobileNetV2’s texture analysis and Efficient-NetV2’s multiscale detection through a dual-branch architecture enhanced with SE blocks, ViT (16×16 patches), and attention-guided fusion. It achieved 99.5% test accuracy with real-time performance (0.15 s/image) and 97.97% field accuracy via Android deployment. Statistical validation confirmed robustness: Kruskal-Wallis H=597.40 (p<0.05), near-perfect AUC (0.999998), and minimal confidence variance (0.000010). Ablation studies verified architectural efficacy (98.68% accuracy with SE/gating modules). This work advances precision agriculture through a scalable framework unifying hybrid deep learning with edge-compatible deployment.

Abstract views: 250 / PDF downloads: 74

Downloads

Download data is not yet available.

Article Details

How to Cite
Njoroge, T., Kibuku, R. and Mugoye, K., 2025. Comparative and edge-hybrid modeling of EfficientNetV2 and MobileNetV2 for multi-classcrop disease classification with statistical validation. Journal of Edge Computing [Online], 4(2), pp.234–262. Available from: https://doi.org/10.55056/jec.905 [Accessed 6 December 2025].
Section
Articles

How to Cite

Njoroge, T., Kibuku, R. and Mugoye, K., 2025. Comparative and edge-hybrid modeling of EfficientNetV2 and MobileNetV2 for multi-classcrop disease classification with statistical validation. Journal of Edge Computing [Online], 4(2), pp.234–262. Available from: https://doi.org/10.55056/jec.905 [Accessed 6 December 2025].
Received 2025-02-19
Accepted 2025-09-09
Published 2025-11-21

References

Abasi, A.K., Makhadmeh, S.N., Alomari, O.A., Tubishat, M. and Mohammed, H.J., 2023. Enhancing Rice Leaf Disease Classification: A Customized Convolutional Neural Network Approach. Sustainability, 15(20), p.15039. Available from: https://doi.org/10.3390/su152015039. DOI: https://doi.org/10.3390/su152015039

Abdu, A., Mokji, M.M. and Sheikh, U.U., 2020. Machine learning for plant disease detection: an investigative comparison between support vector machine and deep learning. IAES International Journal of Artificial Intelligence (IJ-AI), 9(4), pp.670–683. Available from: https://doi.org/10.11591/ijai.v9.i4.pp670-683. DOI: https://doi.org/10.11591/ijai.v9.i4.pp670-683

Barman, U., Sarma, P., Rahman, M., Deka, V., Lahkar, S., Sharma, V. and Saikia, M.J., 2024. ViT-SmartAgri: Vision Transformer and Smartphone-Based Plant Disease Detection for Smart Agriculture. Agronomy, 14(2), p.327. Available from: https://doi.org/10.3390/agronomy14020327. DOI: https://doi.org/10.3390/agronomy14020327

Bernardes, R.C., De Medeiros, A., Silva, L. da, Cantoni, L., Martins, G.F., Mastrangelo, T., Novikov, A. and Mastrangelo, C.B., 2022. Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology. Agriculture, 12(11), p.1801. Available from: https://doi.org/10.3390/agriculture12111801. DOI: https://doi.org/10.3390/agriculture12111801

Cecaj, A., Lippi, M., Mamei, M. and Zambonelli, F., 2020. Comparing Deep Learning and Statistical Methods in Forecasting Crowd Distribution from Aggregated Mobile Phone Data. Applied Sciences, 10(18), p.6580. Available from: https://doi.org/10.3390/app10186580. DOI: https://doi.org/10.3390/app10186580

Chen, H.C., Widodo, A.M., Wisnujati, A., Rahaman, M., Lin, J.C.W., Chen, L. and Weng, C.E., 2022. AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf. Electronics, 11(6), p.951. Available from: https://doi.org/10.3390/electronics11060951. DOI: https://doi.org/10.3390/electronics11060951

Dai, Q., Guo, Y., Li, Z., Song, S., Lyu, S., Sun, D., Wang, Y. and Chen, Z., 2023. Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5. Agronomy, 13(4), p.988. Available from: https://doi.org/10.3390/agronomy13040988. DOI: https://doi.org/10.3390/agronomy13040988

Dhaka, V.S., Meena, S.V., Rani, G., Sinwar, D., Kavita, Ijaz, M.F. and Wo´zniak, M., 2021. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors, 21(14), p.4749. Available from: https://doi.org/10.3390/s21144749. DOI: https://doi.org/10.3390/s21144749

Dong, H., Liu, R. and Tham, A.W., 2024. Accuracy Comparison between Five Machine Learning Algorithms for Financial Risk Evaluation. Journal of Risk and Financial Management, 17(2), p.50. Available from: https://doi.org/10.3390/jrfm17020050. DOI: https://doi.org/10.3390/jrfm17020050

Dong, K., Zhou, C., Ruan, Y. and Li, Y., 2020. MobileNetV2 Model for Image Classification. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). pp.476–480. Available from: https://doi.org/10.1109/ITCA52113.2020.00106. DOI: https://doi.org/10.1109/ITCA52113.2020.00106

Fang, X., Zhen, T. and Li, Z., 2023. Lightweight Multiscale CNN Model for Wheat Disease Detection. Applied Sciences, 13(9), p.5801. Available from: https://doi.org/10.3390/app13095801. DOI: https://doi.org/10.3390/app13095801

Ge, H., Ma, F., Li, Z., Tan, Z. and Du, C., 2021. Improved Accuracy of Phenological Detection in Rice Breeding by Using Ensemble Models of Machine Learning Based on UAV-RGB Imagery. Remote Sensing, 13(14), p.2678. Available from: https://doi.org/10.3390/rs13142678. DOI: https://doi.org/10.3390/rs13142678

Ge, H., Wang, L., Pan, H., Liu, Y., Li, C., Lv, D. and Ma, H., 2024. Cross Attention-Based Multi-Scale Convolutional Fusion Network for Hyperspectral and LiDAR Joint Classification. Remote Sensing, 16(21), p.4073. Available from: https://doi.org/10.3390/rs16214073. DOI: https://doi.org/10.3390/rs16214073

Glegoła, W., Karpus, A. and Przybyłek, A., 2021. MobileNet family tailored for Raspberry Pi. Procedia Computer Science, 192, pp.2249–2258. Available from: https://doi.org/10.1016/j.procs.2021.08.238. DOI: https://doi.org/10.1016/j.procs.2021.08.238

Jia, L., Wang, T., Chen, Y., Zang, Y., Li, X., Shi, H. and Gao, L., 2023. MobileNet-CA-YOLO: An Improved YOLOv7 Based on the MobileNetV3 and Attention Mechanism for Rice Pests and Diseases Detection. Agriculture, 13(7), p.1285. Available from: https://doi.org/10.3390/agriculture13071285. DOI: https://doi.org/10.3390/agriculture13071285

Karypidis, E., Mouslech, S., Skoulariki, K. and Gazis, A., 2022. Comparison Analysis of Traditional Machine Learning and Deep Learning Techniques for Data and Image Classification. WSEAS Transactions on Mathematics, 21, pp.122–130. Available from: https://doi.org/10.37394/23206.2022.21.19. DOI: https://doi.org/10.37394/23206.2022.21.19

Kim, H.S., Choi, D., Yoo, D.G. and Kim, K.P., 2022. Hyperparameter Sensitivity Analysis of Deep Learning-Based Pipe Burst Detection Model for Multiregional Water Supply Networks. Sustainability, 14(21), p.13788. Available from: https://doi.org/10.3390/su142113788. DOI: https://doi.org/10.3390/su142113788

Liu, B.Y., Fan, K.J., Su, W.H. and Peng, Y., 2022. Two-Stage Convolutional Neural Networks for Diagnosing the Severity of Alternaria Leaf Blotch Disease of the Apple Tree. Remote Sensing, 14(11), p.2519. Available from: https://doi.org/10.3390/rs14112519. DOI: https://doi.org/10.3390/rs14112519

Liu, Y., Liu, J., Cheng, W., Chen, Z., Zhou, J., Cheng, H. and Lv, C., 2023. A High-Precision Plant Disease Detection Method Based on a Dynamic Pruning Gate Friendly to Low-Computing Platforms. Plants, 12(11), p.2073. Available from: https://doi.org/10.3390/plants12112073. DOI: https://doi.org/10.3390/plants12112073

Mamun, S.S., Ren, S., Rakib, M.Y.K. and Asafa, G.F., 2025. WGA-SWIN: Efficient Multi-View 3D Object Reconstruction Using Window Grouping Attention in Swin Transformer. Electronics, 14(8), p.1619. Available from: https://doi.org/10.3390/electronics14081619. DOI: https://doi.org/10.3390/electronics14081619

Nazir, T., Iqbal, M.M., Jabbar, S., Hussain, A. and Albathan, M., 2023. EfficientPNet — An Optimized and Efficient Deep Learning Approach for Classifying Disease of Potato Plant Leaves. Agriculture, 13(4), p.841. Available from: https://doi.org/10.3390/agriculture13040841. DOI: https://doi.org/10.3390/agriculture13040841

Ojo, M.O. and Zahid, A., 2023. Improving Deep Learning Classifiers Performance via Preprocessing and Class Imbalance Approaches in a Plant Disease Detection Pipeline. Agronomy, 13(3), p.887. Available from: https://doi.org/10.3390/agronomy13030887. DOI: https://doi.org/10.3390/agronomy13030887

Orchi, H., Sadik, M., Khaldoun, M. and Sabir, E., 2023. Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches. Agriculture, 13(2), p.352. Available from: https://doi.org/10.3390/agriculture13020352. DOI: https://doi.org/10.3390/agriculture13020352

Padshetty, S. and Ambika, 2023. Leaky ReLU-ResNet for Plant Leaf Disease Detection: A Deep Learning Approach. Engineering Proceedings, 59(1), p.39. Available from: https://doi.org/10.3390/engproc2023059039. DOI: https://doi.org/10.3390/engproc2023059039

Parez, S., Dilshad, N., Alghamdi, N.S., Alanazi, T.M. and Lee, J.W., 2023. Visual Intelligence in Precision Agriculture: Exploring Plant Disease Detection via Efficient Vision Transformers. Sensors, 23(15), p.6949. Available from: https://doi.org/10.3390/s23156949. DOI: https://doi.org/10.3390/s23156949

Phinzi, K., Abriha, D. and Szabó, S., 2021. Classification Efficacy Using K-Fold Cross-Validation and Bootstrapping Resampling Techniques on the Example of Mapping Complex Gully Systems. Remote Sensing, 13(15), p.2980. Available from: https://doi.org/10.3390/rs13152980. DOI: https://doi.org/10.3390/rs13152980

Pineda Medina, D., Miranda Cabrera, I., Cruz, R.A. de la, Guerra Arzuaga, L., Cuello Portal, S. and Bianchini, M., 2024. A Mobile App for Detecting Potato Crop Diseases. Journal of Imaging, 10(2), p.47. Available from: https://doi.org/10.3390/jimaging10020047. DOI: https://doi.org/10.3390/jimaging10020047

Saleem, M.H., Potgieter, J. and Arif, K.M., 2020. Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers. Plants, 9(10), p.1319. Available from: https://doi.org/10.3390/plants9101319. DOI: https://doi.org/10.3390/plants9101319

Saleem, S., Sharif, M.I., Sharif, M.I., Sajid, M.Z. and Marinello, F., 2024. Comparison of Deep Learning Models for Multi-Crop Leaf Disease Detection with Enhanced Vegetative Feature Isolation and Definition of a New Hybrid Architecture. Agronomy, 14(10), p.2230. Available from: https://doi.org/10.3390/agronomy14102230. DOI: https://doi.org/10.3390/agronomy14102230

Shah, S., Taj, I., Usman, S., Shah, S., Imran, A. and Khalid, S., 2024. A hybrid approach of vision transformers and CNNs for detection of ulcerative colitis. Scientific Reports, 14, 10. Available from: https://doi.org/10.1038/s41598-024-75901-4. DOI: https://doi.org/10.1038/s41598-024-75901-4

Shah, S.R., Qadri, S., Bibi, H., Shah, S.M.W., Sharif, M.I. and Marinello, F., 2023. Comparing Inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A Case Study on Early Detection of a Rice Disease. Agronomy, 13(6), p.1633. Available from: https://doi.org/10.3390/agronomy13061633. DOI: https://doi.org/10.3390/agronomy13061633

Sun, Y., Ning, L., Zhao, B. and Yan, J., 2024. Tomato Leaf Disease Classification by Combining EfficientNetv2 and a Swin Transformer. Applied Sciences, 14(17), p.7472. Available from: https://doi.org/10.3390/app14177472. DOI: https://doi.org/10.3390/app14177472

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. and Jegou, H., 2021. Training data-efficient image transformers & distillation through attention. In: M. Meila and T. Zhang, eds. Proceedings of the 38th International Conference on Machine Learning, Proceedings of machine learning research, vol. 139. PMLR, pp.10347–10357. Available from: https://proceedings.mlr.press/v139/

touvron21a.html.

Yu, D., Wan, B. and Sheng, Q., 2024. Automated Generation of Urban Spatial Structures Based on Stable Diffusion and CoAtNet Models. Buildings, 14(12), p.3720. Available from: https://doi.org/10.3390/buildings14123720. DOI: https://doi.org/10.3390/buildings14123720

Zhang, Z.Y., Yan, C.X., Min, Q.M., Zhang, Y.X., Jing, W.F., Hou, W.X. and Pan, K.Y., 2024. Leverage Effective Deep Learning Searching Method for Forensic Age Estimation. Bioengineering, 11(7), p.674. Available from: https://doi.org/10.3390/bioengineering11070674. DOI: https://doi.org/10.3390/bioengineering11070674

Zhu, D., Tan, J., Wu, C., Yung, K. and Ip, A.W.H., 2023. Crop Disease Identification by Fusing Multiscale Convolution and Vision Transformer. Sensors, 23(13), p. 6015. Available from: https://doi.org/10.3390/s23136015. DOI: https://doi.org/10.3390/s23136015