Edge computing research: a bibliometric analysis and JEC Volume 3 Issue 2 (2024) highlights
Main Article Content
Abstract
This editorial presents a bibliometric analysis of edge computing research published in IEEE Access from 2018 to 2023, followed by an overview and discussion of the papers featured in the current issue of the Journal of Edge Computing (JEC), Volume 3, Issue 2 (2024). The IEEE Access analysis reveals key trends and themes in edge computing research, including IoT integration, AI and machine learning applications, resource management, wireless networks, and security concerns. The most cited authors, countries, and collaboration patterns are also identified. The JEC papers align well with these findings, addressing challenges and proposing novel solutions in areas such as IoT interoperability, plant disease detection using deep learning, wireless technologies in IoT projects, efficient operating systems, and adaptive IoT honeypot frameworks. The research in both IEEE Access and JEC demonstrates the rapid advancements and growing importance of edge computing in various domains.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Alabdulatif, A., Khalil, I., Yi, X. and Guizani, M., 2019. Secure Edge of Things for Smart Healthcare Surveillance Framework. IEEE Access, 7, pp.31010–31021. Available from: https://doi.org/10.1109/ACCESS.2019.2899323.
Amin, S.U. and Hossain, M.S., 2021. Edge Intelligence and Internet of Things in Healthcare: A Survey. IEEE Access, 9, pp.45–59. Available from: https://doi.org/10.1109/ACCESS.2020.3045115.
Bakir, F., Wang, S., Ekaireb, T., Pearson, J., Krintz, C. and Wolski, R., 2024. Ambience: an operating system for IoT microservices. Journal of Edge Computing, 3(2), pp.168–206. Available from: https://doi.org/10.55056/jec.786.
Celaya-Echarri, M., Froiz-Miguez, I., Azpilicueta, L., Fraga-Lamas, P., Lopez-Iturri, P., Falcone, F. and Fernandez-Carames, T.M., 2020. Building Decentralized Fog Computing-Based Smart Parking Systems: From Deterministic Propagation Modeling to Practical Deployment. IEEE Access, 8, pp.117666–117688. Available from: https://doi.org/10.1109/ACCESS.2020.3004745.
Dang, T.N., Manzoor, A., Tun, Y.K., Kazmi, S.M.A., Haw, R., Hong, S.H., Han, Z. and Hong, C.S., 2022. Joint Communication, Computation, and Control for Computational Task Offloading in Vehicle-Assisted Multi-Access Edge Computing. IEEE Access, 10, pp.122513–122529. Available from: https://doi.org/10.1109/ACCESS.2022.3220251.
Duan, X., Li, B. and Zhao, W., 2020. Energy Consumption Minimization for Near-Far Server Cooperation in NOMA-Assisted Mobile Edge Computing System. IEEE Access, 8, pp.133269–133282. Available from: https://doi.org/10.1109/ACCESS.2020.3010571.
El-Latif, A.A.A., Abd-El-Atty, B., Hossain, M.S., Elmougy, S. and Ghoneim, A., 2018. Secure quantum steganography protocol for fog cloud internet of things. IEEE Access, 6, pp.10332–10340. Available from: https://doi.org/10.1109/ACCESS.2018.2799879.
Fernandez-Carames, T.M. and Fraga-Lamas, P., 2019. A Review on the Application of Blockchain to the Next Generation of Cybersecure Industry 4.0 Smart Factories. IEEE Access, 7, pp.45201–45218. Available from: https://doi.org/10.1109/ACCESS.2019.2908780.
Fernández-Caramés, T.M. and Fraga-Lamas, P., 2018. A Review on the Use of Blockchain for the Internet of Things. IEEE Access, 6, pp.32979–33001. Available from: https://doi.org/10.1109/ACCESS.2018.2842685.
Filali, A., Abouaomar, A., Cherkaoui, S., Kobbane, A. and Guizani, M., 2020. Multiaccess edge computing: A survey. IEEE Access, 8, pp.197017–197046. Available from: https://doi.org/10.1109/ACCESS.2020.3034136.
Fraga-Lamas, P., Fernández-Caramés, T.M., Blanco-Novoa, O. and Vilar-Montesinos, M.A., 2018. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access, 6, pp.13358–13375. Available from: https://doi.org/10.1109/ACCESS.2018.2808326.
Fraga-Lamas, P., Lopez-Iturri, P., Celaya-Echarri, M., Blanco-Novoa, O., Azpilicueta, L., Varela-Barbeito, J., Falcone, F. and Fernandez-Carames, T.M., 2020. Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops. IEEE Access, 8, pp.45496–45511. Available from: https://doi.org/10.1109/ACCESS.2020.2978291.
Froiz-Miguez, I., Fraga-Lamas, P. and Fernandez-Carames, T.M., 2023. Design, Implementation, and Practical Evaluation of a Voice Recognition Based IoT Home Automation System for Low-Resource Languages and Resource-Constrained Edge IoT Devices: A System for Galician and Mobile Opportunistic Scenarios. IEEE Access, 11, pp.63623–63649. Available from: https://doi.org/10.1109/ACCESS.2023.3286391.
Gheisari, M., Pham, Q.V., Alazab, M., Zhang, X., Fernandez-Campusano, C. and Srivastava, G., 2019. ECA: An edge computing architecture for privacy-preserving in IoT-Based smart city. IEEE Access, 7, pp.155779–155786. Available from: https://doi.org/10.1109/ACCESS.2019.2937177.
Hamim, S.A. and Jony, A.I., 2024. Enhanced deep learning model architecture for plant disease detection in Chilli plants. Journal of Edge Computing, 3(2), pp.135–146. Available from: https://doi.org/10.55056/jec.758.
Han, C., Zhang, P., Wang, W., Wang, Y. and Zhang, Z., 2019. Delay-Optimal Joint Processing in Computation-Constrained Fog Radio Access Networks. IEEE Access, 7, pp.58857–58865. Available from: https://doi.org/10.1109/ACCESS.2019.2913147.
Hao, Y., Chen, M., Hu, L., Hossain, M.S. and Ghoneim, A., 2018. Energy Efficient Task Caching and Offloading for Mobile Edge Computing. IEEE Access, 6, pp.11365–11373. Available from: https://doi.org/10.1109/ACCESS.2018.2805798.
Hou, Y., Garg, S., Hui, L., Jayakody, D.N.K., Jin, R. and Hossain, M.S., 2020. A data security enhanced access control mechanism in mobile edge computing. IEEE Access, 8, pp.136119–136130. Available from: https://doi.org/10.1109/ACCESS.2020.3011477.
Irshad, R.R., Hussain, S., Hussain, I., Ahmad, I., Yousif, A., Alwayle, I.M., Alattab, A.A., Alalayah, K.M., Breslin, J.G., Badr, M.M. and Rodrigues, J.J.P.C., 2023. An Intelligent Buffalo-Based Secure Edge-Enabled Computing Platform for Heterogeneous IoT Network in Smart Cities. IEEE Access, 11, pp.69282–69294. Available from: https://doi.org/10.1109/ACCESS.2023.3288815.
Jiang, L., Huang, G., Huang, C. and Wang, W., 2019. Data mining and optimization of a port vessel behavior behavioral model under the internet of things. IEEE Access, 7, pp.139970–139983. Available from: https://doi.org/10.1109/ACCESS.2019.2943654.
Li, M., Zhu, L., Zhang, Z., Du, X. and Guizani, M., 2018. PROS: A privacy-preserving route-sharing service via vehicular fog computing. IEEE Access, 6, pp.66188–66197. Available from: https://doi.org/10.1109/ACCESS.2018.2878792.
Li, S., Li, B. and Zhao, W., 2020. Joint Optimization of Caching and Computation in Multi-Server NOMA-MEC System via Reinforcement Learning. IEEE Access, 8, pp.112762–112771. Available from: https://doi.org/10.1109/ACCESS.2020.3002895.
Luan, L., Xiao, W., Hwang, K., Hossain, M.S., Muhammad, G. and Ghoneim, A., 2020. Memo box: Health assistant for depression with medicine carrier and exercise adjustment driven by edge computing. IEEE Access, 8, pp.195568–195577. Available from: https://doi.org/10.1109/ACCESS.2020.3031725.
Morozov, D.S., Yefimenko, A.A., Nikitchuk, T.M., Kolomiiets, R.O. and Semerikov, S.O., 2024. The sweet taste of IoT deception: an adaptive honeypot framework for design and evaluation. Journal of Edge Computing, 3(2), pp.207–223. Available from: https://doi.org/10.55056/jec.607.
Nduwayezu, M., Pham, Q.V. and Hwang, W.J., 2020. Online Computation Offloading in NOMA-Based Multi-Access Edge Computing: A Deep Reinforcement Learning Approach. IEEE Access, 8, pp.99098–99109. Available from: https://doi.org/10.1109/ACCESS.2020.2997925.
Neto, A.J.V., Zhao, Z., Rodrigues, J.J.P.C., Camboim, H.B. and Braun, T., 2018. Fog-based crime-assistance in smart IoT transportation system. IEEE Access, 6, pp.11101–11111. Available from: https://doi.org/10.1109/ACCESS.2018.2803439.
Pham, H.G.T., Pham, Q.V., Pham, A.T. and Nguyen, C.T., 2020. Joint Task Offloading and Resource Management in NOMA-Based MEC Systems: A Swarm Intelligence Approach. IEEE Access, 8, pp.190463–190474. Available from: https://doi.org/10.1109/ACCESS.2020.3031614.
Pham, Q.V., Fang, F., Ha, V.N., Piran, M.J., Le, M., Le, L.B., Hwang, W.J. and Ding, Z., 2020. A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. IEEE Access, 8, pp.116974–117017. Available from: https://doi.org/10.1109/ACCESS.2020.3001277.
Pham, Q.V., Le, L.B., Chung, S.H. and Hwang, W.J., 2019. Mobile Edge Computing with Wireless Backhaul: Joint Task Offloading and Resource Allocation. IEEE Access, 7, pp.16444–16459. Available from: https://doi.org/10.1109/ACCESS.2018.2883692.
Pham, Q.V., Leanh, T., Tran, N.H., Park, B.J. and Hong, C.S., 2018. Decentralized computation offloading and resource allocation for mobile-edge computing: A matching game approach. IEEE Access, 6, pp.75868–75885. Available from: https://doi.org/10.1109/ACCESS.2018.2882800.
Pundir, S., Wazid, M., Singh, D.P., Das, A.K., Rodrigues, J.J.P.C. and Park, Y., 2020. Intrusion Detection Protocols in Wireless Sensor Networks Integrated to Internet of Things Deployment: Survey and Future Challenges. IEEE Access, 8, pp.3343–3363. Available from: https://doi.org/10.1109/ACCESS.2019.2962829.
Rahman, M.A., Hossain, M.S., Loukas, G., Hassanain, E., Rahman, S.S., Alhamid, M.F. and Guizani, M., 2018. Blockchain-Based Mobile Edge Computing Framework for Secure Therapy Applications. IEEE Access, 6, pp.72469–72478. Available from: https://doi.org/10.1109/ACCESS.2018.2881246.
Rahman, M.A., Rashid, M.M., Shamim Hossain, M., Hassanain, E., Alhamid, M.F. and Guizani, M., 2019. Blockchain and IoT-Based Cognitive Edge Framework for Sharing Economy Services in a Smart City. IEEE Access, 7, pp.18611–18621. Available from: https://doi.org/10.1109/ACCESS.2019.2896065.
Shvaika, D.I., Shvaika, A.I. and Artemchuk, V.O., 2024. Advancing IoT interoperability: dynamic data serialization using ThingsBoard. Journal of Edge Computing, 3(2), pp.126–135. Available from: https://doi.org/10.55056/jec.745.
Tang, C., Wei, X., Zhu, C., Chen, W. and Rodrigues, J.J., 2018. Towards smart parking based on fog computing. IEEE Access, 6, pp.70172–70185. Available from: https://doi.org/10.1109/ACCESS.2018.2880972.
Tang, C., Zhu, C., Wei, X., Wu, H., Li, Q. and Rodrigues, J.J.P.C., 2020. Intelligent Resource Allocation for Utility Optimization in RSU-Empowered Vehicular Network. IEEE Access, 8, pp.94453–94462. Available from: https://doi.org/10.1109/ACCESS.2020.2995797.
Tun, Y.K., Kim, D.H., Alsenwi, M., Tran, N.H., Han, Z. and Hong, C.S., 2020. Energy efficient communication and computation resource slicing for eMBB and URLLC coexistence in 5G and beyond. IEEE Access, 8, pp.136024–136035. Available from: https://doi.org/10.1109/ACCESS.2020.3011167.
Ud Din, I., Guizani, M., Hassan, S., Kim, B.S., Khurram Khan, M., Atiquzzaman, M. and Ahmed, S.H., 2019. The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access, 7, pp.7606–7640. Available from: https://doi.org/10.1109/ACCESS.2018.2886601.
Vakaliuk, T.A., Andreiev, O.V., Dubyna, O.F., Korenivska, O.L. and Andreieva, Y.O., 2024. Use of wireless technologies in IoT projects. Journal of Edge Computing, 3(2), pp.147–167. Available from: https://doi.org/10.55056/jec.750.
Wang, D., Bai, B., Lei, K., Zhao, W., Yang, Y. and Han, Z., 2019. Enhancing Information Security via Physical Layer Approaches in Heterogeneous IoT With Multiple Access Mobile Edge Computing in Smart City. IEEE Access, 7, pp.54508–54521. Available from: https://doi.org/10.1109/ACCESS.2019.2913438.
Wang, W., Fan, L., Huang, P. and Li, H., 2019. A new data processing architecture for multi-scenario applications in aviation manufacturing. IEEE Access, 7, pp.83637–83650. Available from: https://doi.org/10.1109/ACCESS.2019.2925114.
Waqas, M., Niu, Y., Ahmed, M., Li, Y., Jin, D. and Han, Z., 2019. Mobility-Aware Fog Computing in Dynamic Environments: Understandings and Implementation. IEEE Access, 7, pp.38867–38879. Available from: https://doi.org/10.1109/ACCESS.2018.2883662.
Wu, C., Wang, W. and Sun, H., 2021. Dense Aggregation Based Efficient Network for Image Semantic Segmentation in Edge Intelligent Tasks. IEEE Access, 9, pp.21–29. Available from: https://doi.org/10.1109/ACCESS.2020.3046041.
Xia, Z., Du, J., Ren, Y. and Han, Z., 2022. Distributed Artificial Intelligence Enabled Aerial-Ground Networks: Architecture, Technologies and Challenges. IEEE Access, 10, pp.105447–105457. Available from: https://doi.org/10.1109/ACCESS.2022.3210337.
Ye, D., Yu, R., Pan, M. and Han, Z., 2020. Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach. IEEE Access, 8, pp.23920–23935. Available from: https://doi.org/10.1109/ACCESS.2020.2968399.
Yeow, K., Gani, A., Ahmad, R.W., Rodrigues, J.J.P.C. and Ko, K., 2018. Decentralized Consensus for Edge-Centric Internet of Things: A Review, Taxonomy, and Research Issues. IEEE Access, 6, pp.1513–1524. Available from: https://doi.org/10.1109/ACCESS.2017.2779263.
Zhao, P., Zhao, W., Bao, H. and Li, B., 2020. Security Energy Efficiency Maximization for Untrusted Relay Assisted NOMA-MEC Network with WPT. IEEE Access, 8, pp.147387–147398. Available from: https://doi.org/10.1109/ACCESS.2020.3015786.
Zhao, W., Wang, B., Bao, H. and Li, B., 2020. Secure Energy-Saving Resource Allocation on Massive MIMO-MEC System. IEEE Access, 8, pp.137244–137253. Available from: https://doi.org/10.1109/ACCESS.2020.3011694.
Zhao, W., Xu, L., Qi, B., Hu, J., Wang, T. and Runge, T., 2020. Vivid: Augmenting Vision-Based Indoor Navigation System with Edge Computing. IEEE Access, 8, pp.42909–42923. Available from: https://doi.org/10.1109/ACCESS.2020.2978123.
Zhao, Y., Wang, W., Li, Y., Colman Meixner, C., Tornatore, M. and Zhang, J., 2019. Edge Computing and Networking: A Survey on Infrastructures and Applications. IEEE Access, 7, pp.101213–101230. Available from: https://doi.org/10.1109/ACCESS.2019.2927538.